Showing posts with label Artificial Intelligence. Show all posts
Showing posts with label Artificial Intelligence. Show all posts

Wednesday, September 3, 2025

LLM-Powered Patent Search from A to Z: From Basic Prompts to Advanced Strategy

 

Still Stumped by Patent Searches with LLMs? This post breaks down how to use the latest AI Large Language Models (LLMs) to maximize the accuracy and efficiency of your patent searches, including specific model selection methods and advanced ‘deep research’ prompting techniques.

Hi there! Have you ever spent days, or even weeks, lost in a sea of patent documents, trying to find that one piece of information you need? I’ve definitely been there. The anxiety of wondering, ‘Is my idea truly novel?’ can keep you up at night. But thanks to the latest Large Language Models (LLMs), the whole paradigm of patent searching is changing. It’s even possible for an AI to conduct its own ‘deep research’ by diving into multiple sources. Today, I’m going to share some practical examples of ‘prompt engineering’ that I’ve learned firsthand to help you unlock 200% of your LLM’s potential!

Prompt Engineering Tricks to Boost Accuracy by 200%

Choosing the right AI model is important, but the success of your patent search ultimately depends on how you ask your questions. That’s where ‘prompt engineering’ comes in. It’s the key to making the AI accurately grasp your intent and deliver the best possible results. Let’s dive into some real-world examples.

Heads Up!
LLMs are not perfect. They can sometimes confidently present false information, a phenomenon known as ‘hallucination.’ It’s crucial to get into the habit of cross-referencing any patent numbers or critical details the AI provides with an official database.

 

1. Using Chain-of-Thought for Step-by-Step Reasoning

When you have a complex analysis task, asking the AI to ‘show its work’ by thinking step-by-step can reduce logical errors and improve accuracy.

Prompt Example:
Analyze the validity of a patent for an ‘autonomous driving technology that fuses camera and LiDAR sensor data’ by following these steps.

Step 1: Define the core technical components (camera, LiDAR, data fusion).
Step 2: Based on the defined components, generate 5 sets of search keywords for the USPTO database.
Step 3: From the search results, select the 3 most similar prior art patents.
Step 4: Compare the key claims of the selected patents with our technology, and provide your final opinion on the patentability of our tech.

 

2. Using Real-Time External Information (RAG & ReAct)

LLMs only know information up to their last training date. To get the latest patent data, you need to instruct them to search external databases in real-time.

Prompt Example:
You are a patent analyst. Using your search tool, find all patent publications on KIPRIS related to ‘Quantum Dot Displays’ published since January 1, 2024.

1. Organize the list of patents by application number, title of invention, and applicant.
2. Summarize the overall technology trends and analyze the core technical focus of the top 3 applicants.
3. Based on your analysis, predict which technologies in this field are likely to be promising over the next two years.

 

3. Activating the “Deep Research” Function

The latest LLMs can do more than just a single search. They have ‘deep research’ capabilities that can synthesize information from multiple websites, academic papers, and technical documents to create a comprehensive report, much like a human researcher.

Prompt Example:
Activate your deep research function. Write an in-depth report on the global R&D trends for ‘next-generation semiconductor materials using Graphene.’ The report must include the following:

1. The main challenges of the current technology and the latest research trends aimed at solving them (reference and summarize at least 3 reputable academic papers or tech articles).
2. An analysis of the top 5 companies and research institutions leading this field and their key patent portfolios.
3. The expected technology development roadmap and market outlook for the next 5 years.
4. Clearly cite the source (URL) for all information referenced in the report.

 

4. Exploring Multiple Paths (Tree of Thoughts)

This is useful for solving strategic problems with no single right answer, like designing around a patent or charting a new R&D direction. You have the AI explore and evaluate multiple possible scenarios.

Prompt Example:
Propose three new design concepts for a ‘secondary battery electrode structure’ that do not infringe on claim 1 of U.S. Patent ‘US 1234567 B2’.

1. For each design, clearly explain which elements of the original patent were changed and how.
2. Evaluate the technical advantages, expected performance, and potential drawbacks of each design.
3. Select the design you believe has the highest likelihood of avoiding infringement and achieving commercial success, and provide a detailed argument for your choice.

๐Ÿ’ก Pro Tip!
The common thread in all great prompts is that they give the AI a clear ‘role,’ explain the ‘context,’ and demand a ‘specific output format.’ Just remembering these three things will dramatically improve your results.
๐Ÿ’ก

LLM Patent Search: Key Takeaways

Assign a Role: Give the AI a specific expert role, like “You are a patent attorney.”
Step-by-Step Thinking: For complex analyses, instruct the AI to use step-by-step reasoning (CoT) to improve logical accuracy.
Advanced Strategies:
Use Deep Research and Tree of Thoughts to generate expert-level reports.
Cross-Verification is a Must: Always be aware of AI hallucinations and verify important information against original sources.

Frequently Asked Questions

Q: Is the ‘deep research’ function available on all LLMs?
A: No, not yet. It’s more of an advanced feature typically found in the latest premium versions of LLMs like Perplexity, Gemini, and ChatGPT. However, you can mimic a similar effect by using the standard search function and asking questions in multiple, sequential steps.
Q: Can I trust the search results from an LLM 100%?
A: No, you absolutely cannot. An LLM is a powerful assistant, not a substitute for a qualified expert’s final judgment. Due to hallucinations, it can invent patent numbers or misrepresent content. It is essential to always verify its findings against the original documents and have them reviewed by a professional.
Q: Prompt engineering seems complicated. Where should I start?
A: An easy way to start is by modifying the examples shown today. Just applying three techniques—’assigning a role,’ ‘specifying the format,’ and ‘requesting step-by-step thinking’—will dramatically improve the quality of your results.

Patent searching is no longer the tedious, uphill battle it once was. How you wield the powerful tool of LLMs can change the speed of your R&D and business. I hope you’ll use the tips I’ve shared today to create smarter innovations with AI. If you have any more questions, feel free to ask in the comments!

Tuesday, September 2, 2025

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๊ฐ€ ๋งํ•˜๋Š” LLM๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์˜ ๋ฏธ๋ž˜: 'ํ™˜๊ฐ'์€ ๊ฒฐํ•จ์ด ์•„๋‹ˆ๋‹ค? Martin Fowler on the Future of LLM and Software Development: Is 'Hallucination' Not a Flaw?

 

LLM์˜ 'ํ™˜๊ฐ'์ด ๊ฒฐํ•จ์ด ์•„๋‹ˆ๋ผ๊ณ ?
Is LLM's 'Hallucination' Not a Flaw?

์„ธ๊ณ„์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ์‚ฌ์ƒ๊ฐ€ ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๊ฐ€ ์ œ์‹œํ•˜๋Š” LLM ์‹œ๋Œ€์˜ ๊ฐœ๋ฐœ ํŒจ๋Ÿฌ๋‹ค์ž„! ๊ทธ์˜ ๋‚ ์นด๋กœ์šด ํ†ต์ฐฐ์„ ํ†ตํ•ด '๋น„๊ฒฐ์ •์„ฑ'๊ณผ ์ƒˆ๋กœ์šด ๋ณด์•ˆ ์œ„ํ˜‘ ๋“ฑ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋งˆ์ฃผํ•  ๋ฏธ๋ž˜๋ฅผ ๋ฏธ๋ฆฌ ํ™•์ธํ•ด ๋ณด์„ธ์š”.
The development paradigm for the LLM era presented by world-renowned software development thinker Martin Fowler! Get a preview of the future developers will face, including 'non-determinism' and new security threats, through his sharp insights.

์•ˆ๋…•ํ•˜์„ธ์š”! ์š”์ฆ˜ ๋„ˆ๋‚˜ ํ•  ๊ฒƒ ์—†์ด AI, ํŠนํžˆ LLM(๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ)์„ ์—…๋ฌด์— ํ™œ์šฉํ•˜๊ณ  ์žˆ์ฃ . ์ฝ”๋“œ๋ฅผ ์งœ๊ฒŒ ํ•˜๊ฑฐ๋‚˜, ์•„์ด๋””์–ด๋ฅผ ์–ป๊ฑฐ๋‚˜, ์‹ฌ์ง€์–ด๋Š” ๋ณต์žกํ•œ ๊ฐœ๋…์„ ์„ค๋ช…ํ•ด๋‹ฌ๋ผ๊ณ  ํ•˜๊ธฐ๋„ ํ•˜๊ณ ์š”. ์ € ์—ญ์‹œ LLM์˜ ํŽธ๋ฆฌํ•จ์— ํ‘น ๋น ์ ธ ์ง€๋‚ด๊ณ  ์žˆ๋Š”๋ฐ์š”, ๋ฌธ๋“ ์ด๋Ÿฐ ์ƒ๊ฐ์ด ๋“ค๋”๋ผ๊ณ ์š”. '๊ณผ์—ฐ ์šฐ๋ฆฌ๋Š” ์ด ๋„๊ตฌ๋ฅผ ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜๊ณ  ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š” ๊ฑธ๊นŒ?'
Hello! Nowadays, everyone is using AI, especially LLMs (Large Language Models), for work. We make them write code, get ideas, or even ask them to explain complex concepts. I'm also deeply immersed in the convenience of LLMs, but a thought suddenly struck me: 'Are we truly understanding and using this tool correctly?'

์ด๋Ÿฐ ๊ณ ๋ฏผ์˜ ์™€์ค‘์— ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ถ„์•ผ์˜ ์„ธ๊ณ„์ ์ธ ๊ตฌ๋ฃจ, ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ(Martin Fowler)๊ฐ€ ์ตœ๊ทผ LLM๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ์ƒ๊ฐ์„ ์ •๋ฆฌํ•œ ๊ธ€์„ ์ฝ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ 'LLM์€ ๋Œ€๋‹จํ•ด!' ์ˆ˜์ค€์„ ๋„˜์–ด, ๊ทธ ๋ณธ์งˆ์ ์ธ ํŠน์„ฑ๊ณผ ์šฐ๋ฆฌ๊ฐ€ ์•ž์œผ๋กœ ๋งˆ์ฃผํ•˜๊ฒŒ ๋  ๋ณ€ํ™”์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ํ†ต์ฐฐ์ด ๋‹ด๊ฒจ ์žˆ์—ˆ์ฃ . ์˜ค๋Š˜์€ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ํ•จ๊ป˜ ๊ทธ์˜ ์ƒ๊ฐ์„ ๋”ฐ๋ผ๊ฐ€ ๋ณด๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๐Ÿ˜Š
While pondering this, I came across an article by Martin Fowler, a world-renowned guru in the software development field, who recently summarized his thoughts on LLMs and software development. It went beyond a simple 'LLMs are amazing!' level, offering deep insights into their fundamental nature and the changes we will face. Today, I'd like to explore his thoughts with you. ๐Ÿ˜Š

LLM and Software Development

 

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ, LLM์˜ ํ˜„์ฃผ์†Œ๋ฅผ ๋งํ•˜๋‹ค ๐Ÿค”
Martin Fowler on the Current State of LLMs ๐Ÿค”

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๋Š” ๋จผ์ € ํ˜„์žฌ AI ์‚ฐ์—…์ด ๋ช…๋ฐฑํ•œ '๋ฒ„๋ธ”' ์ƒํƒœ์— ์žˆ๋‹ค๊ณ  ์ง„๋‹จํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์—ญ์‚ฌ์ ์œผ๋กœ ๋ชจ๋“  ๊ธฐ์ˆ  ํ˜์‹ ์ด ๊ทธ๋ž˜์™”๋“ฏ, ๋ฒ„๋ธ”์ด ๊บผ์ง„ ํ›„์—๋„ ์•„๋งˆ์กด์ฒ˜๋Ÿผ ์‚ด์•„๋‚จ์•„ ์ƒˆ๋กœ์šด ์‹œ๋Œ€๋ฅผ ์—ฌ๋Š” ๊ธฐ์—…์ด ๋‚˜ํƒ€๋‚  ๊ฒƒ์ด๋ผ๊ณ  ๋ดค์–ด์š”. ์ค‘์š”ํ•œ ๊ฑด, ์ง€๊ธˆ ๋‹จ๊ณ„์—์„œ๋Š” ํ”„๋กœ๊ทธ๋ž˜๋ฐ์˜ ๋ฏธ๋ž˜๋‚˜ ํŠน์ • ์ง์—…์˜ ์•ˆ์ •์„ฑ์— ๋Œ€ํ•ด ๋ˆ„๊ตฌ๋„ ํ™•์‹คํžˆ ์•Œ ์ˆ˜ ์—†๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
Martin Fowler first diagnoses the current AI industry as being in a clear 'bubble' state. However, as with all technological innovations historically, he believes that even after the bubble bursts, companies like Amazon will survive and usher in a new era. The important thing is that at this stage, no one can be certain about the future of programming or the job security of specific professions.

๊ทธ๋ž˜์„œ ๊ทธ๋Š” ์„ฃ๋ถ€๋ฅธ ์˜ˆ์ธก๋ณด๋‹ค๋Š” ๊ฐ์ž LLM์„ ์ง์ ‘ ์‚ฌ์šฉํ•ด๋ณด๊ณ , ๊ทธ ๊ฒฝํ—˜์„ ์ ๊ทน์ ์œผ๋กœ ๊ณต์œ ํ•˜๋Š” ์‹คํ—˜์ ์ธ ์ž์„ธ๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ ๋ชจ๋‘๊ฐ€ ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ํƒํ—˜ํ•˜๋Š” ๊ฐœ์ฒ™์ž๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ์˜๋ฏธ๊ฒ ์ฃ ?
Therefore, he emphasizes that an experimental attitude of personally using LLMs and actively sharing those experiences is more important than making hasty predictions. This implies that we all need to become pioneers exploring this new tool, right?

๐Ÿ’ก ์•Œ์•„๋‘์„ธ์š”!
๐Ÿ’ก Good to know!

ํŒŒ์šธ๋Ÿฌ๋Š” ์ตœ๊ทผ LLM ํ™œ์šฉ์— ๋Œ€ํ•œ ์„ค๋ฌธ์กฐ์‚ฌ๋“ค์ด ์‹ค์ œ ์‚ฌ์šฉ ํ๋ฆ„์„ ์ œ๋Œ€๋กœ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ง€์ ํ–ˆ์–ด์š”. ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์˜ ๊ธฐ๋Šฅ ์ฐจ์ด๋„ ํฌ๊ธฐ ๋•Œ๋ฌธ์—, ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ์˜๊ฒฌ๋ณด๋‹ค๋Š” ์ž์‹ ์˜ ์ง์ ‘์ ์ธ ๊ฒฝํ—˜์„ ๋ฏฟ๋Š” ๊ฒƒ์ด ๋” ์ค‘์š”ํ•ด ๋ณด์ž…๋‹ˆ๋‹ค.
Fowler pointed out that recent surveys on LLM usage may not accurately reflect actual usage patterns. Since there are also significant differences in the capabilities of various models, it seems more important to trust your own direct experience rather than the opinions of others.

 

LLM์˜ ํ™˜๊ฐ: ๊ฒฐํ•จ์ด ์•„๋‹Œ ๋ณธ์งˆ์  ํŠน์ง• ๐Ÿง 
LLM Hallucination: An Intrinsic Feature, Not a Flaw ๐Ÿง 

์ด๋ฒˆ ๊ธ€์—์„œ ๊ฐ€์žฅ ํฅ๋ฏธ๋กœ์› ๋˜ ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค. ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ์‚ฌ์‹ค์ด ์•„๋‹Œ ์ •๋ณด๋ฅผ ๊ทธ๋Ÿด๋“ฏํ•˜๊ฒŒ ๋งŒ๋“ค์–ด๋‚ด๋Š” 'ํ™˜๊ฐ(Hallucination)' ํ˜„์ƒ์„ ๋‹จ์ˆœํ•œ '๊ฒฐํ•จ'์ด ์•„๋‹ˆ๋ผ '๋ณธ์งˆ์ ์ธ ํŠน์„ฑ'์œผ๋กœ ๋ด์•ผ ํ•œ๋‹ค๊ณ  ์ฃผ์žฅํ•ฉ๋‹ˆ๋‹ค. ์ •๋ง ์ถฉ๊ฒฉ์ ์ด์ง€ ์•Š๋‚˜์š”? LLM์€ ๊ฒฐ๊ตญ '์œ ์šฉ์„ฑ์ด ์žˆ๋Š” ํ™˜๊ฐ์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ'๋ผ๋Š” ๊ด€์ ์ž…๋‹ˆ๋‹ค.
This was the most interesting part of the article for me. Fowler argues that the 'hallucination' phenomenon, where LLMs create plausible but untrue information, should be seen as an 'intrinsic feature' rather than a mere 'flaw'. Isn't that shocking? The perspective is that LLMs are ultimately 'tools for generating useful hallucinations'.

์ด๋Ÿฐ ๊ด€์ ์—์„œ ๋ณด๋ฉด, ์šฐ๋ฆฌ๋Š” LLM์˜ ๋‹ต๋ณ€์„ ๋งน๋ชฉ์ ์œผ๋กœ ์‹ ๋ขฐํ•ด์„œ๋Š” ์•ˆ ๋ฉ๋‹ˆ๋‹ค. ์˜คํžˆ๋ ค ๋™์ผํ•œ ์งˆ๋ฌธ์„ ์—ฌ๋Ÿฌ ๋ฒˆ, ํ‘œํ˜„์„ ๋ฐ”๊ฟ”๊ฐ€๋ฉฐ ๋˜์ ธ๋ณด๊ณ  ๋‹ต๋ณ€์˜ ์ผ๊ด€์„ฑ์„ ํ™•์ธํ•˜๋Š” ์ž‘์—…์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ์ˆซ์ž ๊ณ„์‚ฐ๊ณผ ๊ฐ™์ด ๊ฒฐ์ •์ ์ธ ๋‹ต์ด ํ•„์š”ํ•œ ๋ฌธ์ œ์— LLM์„ ์ง์ ‘ ์‚ฌ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ์ ์ ˆํ•˜์ง€ ์•Š๋‹ค๊ณ  ๋ง๋ถ™์˜€์Šต๋‹ˆ๋‹ค.
From this viewpoint, we should not blindly trust the answers from LLMs. Instead, it is essential to ask the same question multiple times with different phrasing to check for consistency in the answers. He added that attempting to use LLMs directly for problems requiring definitive answers, such as numerical calculations, is not appropriate.

⚠️ ์ฃผ์˜ํ•˜์„ธ์š”!
⚠️ Be careful!

ํŒŒ์šธ๋Ÿฌ๋Š” LLM์„ '์ฃผ๋‹ˆ์–ด ๊ฐœ๋ฐœ์ž'์— ๋น„์œ ํ•˜๋Š” ๊ฒƒ์— ๊ฐ•ํ•˜๊ฒŒ ๋น„ํŒํ•ฉ๋‹ˆ๋‹ค. LLM์€ "๋ชจ๋“  ํ…Œ์ŠคํŠธ ํ†ต๊ณผ!"๋ผ๊ณ  ์ž์‹  ์žˆ๊ฒŒ ๋งํ•˜๋ฉด์„œ ์‹ค์ œ๋กœ๋Š” ํ…Œ์ŠคํŠธ๋ฅผ ์‹คํŒจ์‹œํ‚ค๋Š” ์ฝ”๋“œ๋ฅผ ๋‚ด๋†“๋Š” ๊ฒฝ์šฐ๊ฐ€ ํ”ํ•˜์ฃ . ๋งŒ์•ฝ ์ธ๊ฐ„ ๋™๋ฃŒ๊ฐ€ ์ด๋Ÿฐ ํ–‰๋™์„ ๋ฐ˜๋ณตํ•œ๋‹ค๋ฉด, ์‹ ๋ขฐ๋ฅผ ์žƒ๊ณ  ์ธ์‚ฌ ๋ฌธ์ œ๋กœ ์ด์–ด์งˆ ์ˆ˜์ค€์˜ ์‹ฌ๊ฐํ•œ ๊ฒฐํ•จ์ด๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. LLM์€ ๋™๋ฃŒ๊ฐ€ ์•„๋‹Œ, ๊ฐ•๋ ฅํ•˜์ง€๋งŒ ์‹ค์ˆ˜๋ฅผ ์ €์ง€๋ฅผ ์ˆ˜ ์žˆ๋Š” '๋„๊ตฌ'๋กœ ์ธ์‹ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
Fowler strongly criticizes the analogy of an LLM to a 'junior developer'. LLMs often confidently state "All tests passed!" while providing code that actually fails tests. If a human colleague were to do this repeatedly, it would be a serious flaw leading to a loss of trust and personnel issues. LLMs should be recognized not as colleagues, but as powerful 'tools' that can make mistakes.

 

์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™, '๋น„๊ฒฐ์ •์„ฑ' ์‹œ๋Œ€๋กœ์˜ ์ „ํ™˜ ๐ŸŽฒ
Software Engineering's Shift to an Era of 'Non-Determinism' ๐ŸŽฒ

์ „ํ†ต์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์€ '๊ฒฐ์ •๋ก ์ '์ธ ์„ธ๊ณ„ ์œ„์— ์„ธ์›Œ์ ธ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. '2+2'๋ฅผ ์ž…๋ ฅํ•˜๋ฉด '4'๊ฐ€ ๋‚˜์™€์•ผ ํ•˜๋“ฏ, ๋ชจ๋“  ๊ฒƒ์€ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜๊ณ  ์ผ๊ด€์ ์ด์–ด์•ผ ํ–ˆ์ฃ . ์˜ˆ์ƒ๊ณผ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋Š” '๋ฒ„๊ทธ'๋กœ ์ทจ๊ธ‰๋˜์–ด ์ฆ‰์‹œ ์ˆ˜์ •๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
Traditional software engineering was built on a 'deterministic' world. Just as inputting '2+2' must yield '4', everything had to be predictable and consistent. Unexpected results were treated as 'bugs' and fixed immediately.

ํ•˜์ง€๋งŒ LLM์˜ ๋“ฑ์žฅ์€ ์ด๋Ÿฌํ•œ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ฐ”๊พธ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์— '๋น„๊ฒฐ์ •์„ฑ(Non-Determinism)'์„ ๋„์ž…ํ•˜๋Š” ์ „ํ™˜์ ์ด ๋  ๊ฒƒ์ด๋ผ๊ณ  ์ง„๋‹จํ•ฉ๋‹ˆ๋‹ค. ๋™์ผํ•œ ์š”์ฒญ์—๋„ LLM์€ ๋ฏธ๋ฌ˜ํ•˜๊ฒŒ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋ฌผ์„ ๋‚ด๋†“์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ๋Ÿด๋“ฏํ•ด ๋ณด์ด๋Š” ์ฝ”๋“œ ์•ˆ์— ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๋ฅผ ์ˆจ๊ฒจ๋†“๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
However, the emergence of LLMs is fundamentally changing this paradigm. Fowler diagnoses that LLMs will be a turning point, introducing 'Non-Determinism' into software engineering. Even with the same request, an LLM can produce subtly different outputs and may hide critical errors within plausible-looking code.

์ด์ œ ๊ฐœ๋ฐœ์ž์˜ ์—ญํ• ์€ ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, LLM์ด ๋งŒ๋“ค์–ด๋‚ธ ๋ถˆํ™•์‹คํ•œ ๊ฒฐ๊ณผ๋ฌผ์„ ๋น„ํŒ์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š” ๋Šฅ๋ ฅ์ด ๋”์šฑ ์ค‘์š”ํ•ด์กŒ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜ ํ‘œ๋กœ ๊ทธ ์ฐจ์ด๋ฅผ ๊ฐ„๋‹จํžˆ ์ •๋ฆฌํ•ด๋ดค์Šต๋‹ˆ๋‹ค.
Now, the role of a developer has become more about the ability to critically verify and manage the uncertain outputs generated by LLMs, going beyond simply writing code. I've summarized the differences in the table below.

๊ตฌ๋ถ„
Category
์ „ํ†ต์  ์†Œํ”„ํŠธ์›จ์–ด (๊ฒฐ์ •์ )
Traditional Software (Deterministic)
LLM ๊ธฐ๋ฐ˜ ์†Œํ”„ํŠธ์›จ์–ด (๋น„๊ฒฐ์ •์ )
LLM-based Software (Non-deterministic)
๊ฒฐ๊ณผ ์˜ˆ์ธก์„ฑ
Result Predictability
๋™์ผ ์ž…๋ ฅ, ๋™์ผ ๊ฒฐ๊ณผ ๋ณด์žฅ
Same input, same output guaranteed
๋™์ผ ์ž…๋ ฅ์—๋„ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ ๊ฐ€๋Šฅ
Different outputs possible for the same input
์˜ค๋ฅ˜์˜ ์ •์˜
Definition of Error
์˜ˆ์ธก์„ ๋ฒ—์–ด๋‚œ ๋ชจ๋“  ๋™์ž‘ (๋ฒ„๊ทธ)
Any behavior deviating from prediction (Bug)
๊ฒฐ๊ณผ์˜ ๋ถˆํ™•์‹ค์„ฑ (๋ณธ์งˆ์  ํŠน์„ฑ)
Uncertainty of results (Intrinsic feature)
๊ฐœ๋ฐœ์ž ์—ญํ• 
Developer's Role
์ •ํ™•ํ•œ ๋กœ์ง ๊ตฌํ˜„ ๋ฐ ๋””๋ฒ„๊น…
Implementing precise logic and debugging
๊ฒฐ๊ณผ๋ฌผ ๊ฒ€์ฆ ๋ฐ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ
Verifying outputs and managing uncertainty

 

ํ”ผํ•  ์ˆ˜ ์—†๋Š” ์œ„ํ˜‘: ๋ณด์•ˆ ๋ฌธ์ œ ๐Ÿ”
The Unavoidable Threat: Security Issues ๐Ÿ”

๋งˆ์ง€๋ง‰์œผ๋กœ ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ์†Œํ”„ํŠธ์›จ์–ด ์‹œ์Šคํ…œ์˜ ๊ณต๊ฒฉ ํ‘œ๋ฉด์„ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํ™•๋Œ€ํ•œ๋‹ค๋Š” ์‹ฌ๊ฐํ•œ ๊ฒฝ๊ณ ๋ฅผ ๋˜์ง‘๋‹ˆ๋‹ค. ํŠนํžˆ ๋ธŒ๋ผ์šฐ์ € ์—์ด์ „ํŠธ์™€ ๊ฐ™์ด ๋น„๊ณต๊ฐœ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ, ์™ธ๋ถ€ ํ†ต์‹ , ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๋Š” ์ฝ˜ํ…์ธ  ๋…ธ์ถœ์ด๋ผ๋Š” '์น˜๋ช…์  ์‚ผ์ค‘' ์œ„ํ—˜์„ ๊ฐ€์ง„ ๋„๊ตฌ๋“ค์€ ๊ทผ๋ณธ์ ์œผ๋กœ ์•ˆ์ „ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์ด ๊ทธ์˜ ์˜๊ฒฌ์ž…๋‹ˆ๋‹ค.
Finally, Fowler issues a serious warning that LLMs significantly expand the attack surface of software systems. He opines that tools with the 'lethal triple' risk of accessing private data, communicating externally, and being exposed to untrusted content, such as browser agents, are fundamentally difficult to secure.

์˜ˆ๋ฅผ ๋“ค์–ด, ์›น ํŽ˜์ด์ง€์— ์ธ๊ฐ„์˜ ๋ˆˆ์—๋Š” ๋ณด์ด์ง€ ์•Š๋Š” ๋ช…๋ น์–ด๋ฅผ ์ˆจ๊ฒจ LLM์„ ์†์ด๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ฏผ๊ฐํ•œ ๊ฐœ์ธ ์ •๋ณด๋ฅผ ์œ ์ถœํ•˜๋„๋ก ์œ ๋„ํ•˜๋Š” ๊ณต๊ฒฉ์ด ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค. ๊ฐœ๋ฐœ์ž๋“ค์€ ์ด์ œ ์ฝ”๋“œ์˜ ๊ธฐ๋Šฅ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, LLM๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ชจ๋“  ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ณด์•ˆ ์ทจ์•ฝ์ ์„ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
For example, it becomes possible to trick an LLM by hiding commands invisible to the human eye on a web page, thereby inducing it to leak sensitive personal information. Developers must now consider not only the functionality of their code but also new security vulnerabilities that can arise in all processes interacting with LLMs.

๐Ÿ’ก

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ์˜ LLM ํ•ต์‹ฌ ์ธ์‚ฌ์ดํŠธ
Martin Fowler's Core LLM Insights

ํ™˜๊ฐ์€ ๋ณธ์งˆ:
Hallucination is Intrinsic:
LLM์˜ ํ™˜๊ฐ์€ '๊ฒฐํ•จ'์ด ์•„๋‹Œ '๋ณธ์งˆ์  ํŠน์ง•'์œผ๋กœ ์ดํ•ดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
LLM's hallucination must be understood as an 'intrinsic feature,' not a 'flaw.'
๋น„๊ฒฐ์ •์„ฑ์˜ ์‹œ๋Œ€:
The Era of Non-Determinism:
์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์ด ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅ์„ฑ์„ ๊ด€๋ฆฌํ•˜๋Š” ์‹œ๋Œ€๋กœ ์ง„์ž…ํ–ˆ์Šต๋‹ˆ๋‹ค.
Software engineering has entered an era of managing unpredictability.
๊ฒ€์ฆ์€ ํ•„์ˆ˜:
Verification is a Must:
LLM์˜ ๊ฒฐ๊ณผ๋ฌผ์€ ์ฃผ๋‹ˆ์–ด ๊ฐœ๋ฐœ์ž๊ฐ€ ์•„๋‹Œ, ๊ฒ€์ฆ์ด ํ•„์ˆ˜์ ์ธ '๋„๊ตฌ'์˜ ์‚ฐ์ถœ๋ฌผ์ž…๋‹ˆ๋‹ค.
The output of an LLM is not that of a junior developer, but the product of a 'tool' that requires mandatory verification.
๋ณด์•ˆ ์œ„ํ˜‘:
Security Threats:
LLM์€ ์‹œ์Šคํ…œ์˜ ๊ณต๊ฒฉ ํ‘œ๋ฉด์„ ๋„“ํžˆ๋Š” ์ƒˆ๋กœ์šด ๋ณด์•ˆ ๋ณ€์ˆ˜์ž…๋‹ˆ๋‹ค.
LLMs are a new security variable that broadens a system's attack surface.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ ❓
Frequently Asked Questions ❓

Q: ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๊ฐ€ 'ํ™˜๊ฐ'์„ ๊ฒฐํ•จ์ด ์•„๋‹Œ ๋ณธ์งˆ๋กœ ๋ด์•ผ ํ•œ๋‹ค๊ณ  ๋งํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?
Q: Why does Martin Fowler say that 'hallucination' should be seen as an intrinsic feature, not a flaw?
A: LLM์€ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ€์žฅ ๊ทธ๋Ÿด๋“ฏํ•œ ๋‹ค์Œ ๋‹จ์–ด๋ฅผ ์˜ˆ์ธกํ•˜์—ฌ ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•˜๋Š” ๋ชจ๋ธ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์‚ฌ์‹ค๊ด€๊ณ„์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ๋งค๋„๋Ÿฌ์šด ๋ฌธ์žฅ์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” 'ํ™˜๊ฐ'์€ ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ฒฐ๊ณผ๋ฌผ์ด๋ฉฐ, ์ด ํŠน์„ฑ์„ ์ดํ•ดํ•ด์•ผ LLM์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.
A: This is because LLMs are models that generate sentences by predicting the most plausible next word based on vast amounts of data. In this process, 'hallucination,' which creates fluent sentences regardless of factual accuracy, is a natural outcome. Understanding this characteristic is key to using LLMs correctly.
Q: ์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์˜ '๋น„๊ฒฐ์ •์„ฑ'์ด๋ž€ ๋ฌด์—‡์„ ์˜๋ฏธํ•˜๋ฉฐ, ์™œ ์ค‘์š”ํ•œ๊ฐ€์š”?
Q: What does 'non-determinism' in software engineering mean, and why is it important?
A: '๋น„๊ฒฐ์ •์„ฑ'์ด๋ž€ ๋™์ผํ•œ ์ž…๋ ฅ์— ๋Œ€ํ•ด ํ•ญ์ƒ ๋™์ผํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ค์ง€ ์•Š๋Š” ํŠน์„ฑ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด๋Š” 100% ์˜ˆ์ธก ๊ฐ€๋Šฅํ•ด์•ผ ํ–ˆ์ง€๋งŒ, LLM์€ ๊ฐ™์€ ์งˆ๋ฌธ์—๋„ ๋‹ค๋ฅธ ๋‹ต๋ณ€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ถˆํ™•์‹ค์„ฑ์„ ์ดํ•ดํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์ด LLM ์‹œ๋Œ€ ๊ฐœ๋ฐœ์ž์˜ ํ•ต์‹ฌ ์—ญ๋Ÿ‰์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
A: 'Non-determinism' refers to the characteristic where the same input does not always produce the same output. While traditional software had to be 100% predictable, an LLM can give different answers to the same question. Understanding and managing this uncertainty has become a core competency for developers in the age of LLMs.
Q: LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ์‹ ๋ขฐํ•˜๊ณ  ๋ฐ”๋กœ ์‚ฌ์šฉํ•ด๋„ ๋ ๊นŒ์š”?
Q: Can I trust and use the code generated by an LLM immediately?
A: ์•„๋‹ˆ์š”, ์ ˆ๋Œ€ ์•ˆ ๋ฉ๋‹ˆ๋‹ค. ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ๊ทธ๋Ÿด๋“ฏํ•˜์ง€๋งŒ ์ž‘๋™ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ๋ณด์•ˆ์— ์ทจ์•ฝํ•œ ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ•ฉ๋‹ˆ๋‹ค. ์ƒ์„ฑ๋œ ์ฝ”๋“œ๋Š” ๋ฐ˜๋“œ์‹œ ๊ฐœ๋ฐœ์ž๊ฐ€ ์ง์ ‘ ๊ฒ€ํ† , ํ…Œ์ŠคํŠธ, ๊ฒ€์ฆํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์ณ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
A: No, absolutely not. Martin Fowler warns that LLMs can generate code that looks plausible but doesn't work or is insecure. The generated code must be reviewed, tested, and verified by a developer.
Q: LLM์„ ์‚ฌ์šฉํ•˜๋ฉด ์™œ ๋ณด์•ˆ ์œ„ํ˜‘์ด ์ปค์ง€๋‚˜์š”?
Q: Why do security threats increase with the use of LLMs?
A: LLM์€ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ณ , ๋•Œ๋กœ๋Š” ๋ฏผ๊ฐํ•œ ์ •๋ณด์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์•…์˜์ ์ธ ์‚ฌ์šฉ์ž๊ฐ€ ์›น์‚ฌ์ดํŠธ๋‚˜ ์ž…๋ ฅ๊ฐ’์— ๋ณด์ด์ง€ ์•Š๋Š” ๋ช…๋ น์–ด๋ฅผ ์ˆจ๊ฒจ LLM์„ ์กฐ์ข…(ํ”„๋กฌํ”„ํŠธ ์ธ์ ์…˜)ํ•˜์—ฌ ์ •๋ณด๋ฅผ ์œ ์ถœํ•˜๊ฑฐ๋‚˜ ์‹œ์Šคํ…œ์„ ๊ณต๊ฒฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋ณด์•ˆ ์œ„ํ˜‘์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
A: Because LLMs interact with external data and can sometimes access sensitive information. Malicious users can hide invisible commands in websites or inputs to manipulate the LLM (prompt injection), leading to new types of security threats such as data leakage or system attacks.

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ์˜ ํ†ต์ฐฐ์€ LLM์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๋ฐ”๋ผ๋ณด๊ณ  ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ๊ฐ€์ด๋“œ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ ํŽธ๋ฆฌํ•œ ์ฝ”๋“œ ์ƒ์„ฑ๊ธฐ๋ฅผ ๋„˜์–ด, ์šฐ๋ฆฌ ๊ฐœ๋ฐœ ํ™˜๊ฒฝ์˜ ๊ทผ๋ณธ์ ์ธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋ฐ”๊พธ๋Š” ์กด์žฌ์ž„์„ ์ธ์‹ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ์˜ ์กฐ์–ธ์ฒ˜๋Ÿผ, ๋‘๋ ค์›Œํ•˜๊ฑฐ๋‚˜ ๋งน์‹ ํ•˜๊ธฐ๋ณด๋‹ค๋Š” ์ ๊ทน์ ์œผ๋กœ ์‹คํ—˜ํ•˜๊ณ  ๊ฒฝํ—˜์„ ๊ณต์œ ํ•˜๋ฉฐ ์ด ๊ฑฐ๋Œ€ํ•œ ๋ณ€ํ™”์˜ ๋ฌผ๊ฒฐ์— ํ˜„๋ช…ํ•˜๊ฒŒ ์˜ฌ๋ผํƒ€์•ผ ํ•  ๋•Œ์ž…๋‹ˆ๋‹ค.
Martin Fowler's insights provide an important guide on how to view and use the new tool that is the LLM. We must recognize it not just as a convenient code generator, but as an entity that is changing the fundamental paradigm of our development environment. As he advises, now is the time to wisely ride this massive wave of change by experimenting and sharing experiences, rather than fearing or blindly trusting it.

์—ฌ๋Ÿฌ๋ถ„์€ LLM์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ•˜์‹œ๋‚˜์š”? ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ๊ฒช์—ˆ๋˜ ํฅ๋ฏธ๋กœ์šด ๊ฒฝํ—˜์ด ์žˆ๋‹ค๋ฉด ๋Œ“๊ธ€๋กœ ๊ณต์œ ํ•ด์ฃผ์„ธ์š”! ๐Ÿ˜Š
What are your thoughts on LLMs? If you have any interesting experiences from your development process, please share them in the comments! ๐Ÿ˜Š

Saturday, May 27, 2017

์•ŒํŒŒ๊ณ ์˜ ์ถฉ๊ฒฉ, ์ œ4์ฐจ์‚ฐ์—…ํ˜๋ช…์‹œ๋Œ€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ธํ”„๋ผ๋Š” ?

๋ฐ”๋‘‘์„ธ๊ณ„์—์„œ ์ธ๊ฐ„์ด ์•ŒํŒŒ๊ณ ๋ฅผ ์ด๊ธฐ๋Š” ์—ญ์‚ฌ๋Š” 2016๋…„ ์ด์„ธ๋Œ์˜ ๋Œ€๊ตญ์ด ๋งˆ์ง€๋ง‰์ด ๋  ๊ฒƒ์ด๋ผ๋Š” ๊ธฐ์‚ฌ๋ฅผ ์ฝ์—ˆ์Šต๋‹ˆ๋‹ค. ์ค‘๊ตญ ๋ฐ”๋‘‘์ „๋ฌธ๊ฐ€๋Š” ์ธํ„ฐ๋ทฐ์—์„œ ์ธ๊ฐ„์€ ์•ŒํŒŒ๊ณ ์˜ ๋ฐ”๋‘‘์„ ํ†ตํ•ด ๊ทธ๋™์•ˆ ์ƒ๊ฐํ•˜์ง€ ๋ชปํ•œ ๋ฐœ์ „์„ ๊ธฐ๋Œ€ํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋ผ๊ณ  ๋งํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

์•„๋ž˜ ๋…ผ๋ฌธ์—์„œ ์ธ๊ณต์ง€๋Šฅ ์ „๋ฌธ๊ฐ€๋“ค์ด ์˜ˆ๊ฒฌํ•˜๊ณ  ์žˆ๋Š” ๋ฐ”์™€ ๊ฐ™์ด, ํ•œ ์„ธ๋Œ€๊ฐ€ ๋‹ค ์ง€๋‚˜๊ฐ€๊ธฐ ์ „์— ์ธ๊ณต์ง€๋Šฅ์€ ๋Šฅ๋ ฅ๋ฉด์—์„œ๋Š” ์ธ๊ฐ„์„ ์•ž์„ค ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋•Œ ์ธ๊ณต์ง€๋Šฅ์œผ๋กœ๋ถ€ํ„ฐ ์ธ๊ฐ„์„ ๋ณดํ˜ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์€ ์˜ค์ง ์ธ๊ฐ„์˜ ์ฐฝ์ž‘๋ฌผ์—๋งŒ ํ—ˆ๋ฝํ•˜๊ณ  ์žˆ๋Š” ์ง€์‹์žฌ์‚ฐ๊ถŒ๋ฐ–์— ์—†์„์ง€๋„ ๋ชจ๋ฆ…๋‹ˆ๋‹ค.

์ œ4์ฐจ์‚ฐ์—…ํ˜๋ช…์‹œ๋Œ€ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์ธํ”„๋ผ(Infrastructure)๊ฐ€ ๋ฌด์—‡์ธ์ง€ ๋ฌป๋Š”๋‹ค๋ฉด ์ €๋Š” IoT(์‚ฌ๋ฌผ์ธํ„ฐ๋„ท)์˜ ๊ธฐ๋ฐ˜์‹œ์„คํ†ต์ œ์™€ IP(์ง€์‹์žฌ์‚ฐ) ๋ณดํ˜ธ์ œ๋„์˜ ๊ฐ•ํ™”๋ผ๊ณ  ๋งํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค.

์šฐ๋ฆฌ ์ •๋ถ€๊ฐ€ ์ธ๊ตฌ์ ˆ๋ฒฝ ๋ฌธ์ œ, ์ผ์ž๋ฆฌ ๋ฌธ์ œ๋งŒํผ์ด๋‚˜ ์ข€๋” ์ ๊ทน์ ์œผ๋กœ ์ œ4์ฐจ์‚ฐ์—…์— ๊ด€ํ•œ ์ •์ฑ…์„ ๊ณ ๋ฏผํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๊ฐ€ ์—ฌ๊ธฐ์— ์žˆ์Šต๋‹ˆ๋‹ค.

<๋ฐœ์ทŒ>
"์ธ๊ณต ์ง€๋Šฅ (AI)์˜ ๋ฐœ์ „์€ ๊ตํ†ต, ๊ฑด๊ฐ•, ๊ณผํ•™, ๊ธˆ์œต ๋ฐ ๊ตฐ๋Œ€๋ฅผ ๊ฐœ์กฐํ•˜์—ฌ ํ˜„๋Œ€ ์ƒํ™œ์„ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ๊ณต๊ณต ์ •์ฑ…์„ ์กฐ์ •ํ•˜๋ ค๋ฉด ์ด๋Ÿฌํ•œ ๋ฐœ์ „์„ ๋ณด๋‹ค ์ž˜ ์˜ˆ์ธกํ•  ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์šฐ๋ฆฌ๋Š” ์ธ๊ณต ์ง€๋Šฅ์˜ ์ง„๋ณด์— ๊ด€ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ์—ฐ๊ตฌ์ž์˜ ๋ฏฟ์Œ์„ ์กฐ์‚ฌํ•œ ๋Œ€๊ทœ๋ชจ ์„ค๋ฌธ ์กฐ์‚ฌ ๊ฒฐ๊ณผ๋ฅผ ๋ณด๊ณ ํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์›๋“ค์€ ์–ธ์–ด ๋ฒˆ์—ญํ•˜๋Š” ์ผ (2024 ๋…„๊นŒ์ง€), ๊ณ ๋“ฑํ•™๊ต ์—์„ธ์ด ์“ฐ๋Š”์ผ (2026 ๋…„), ํŠธ๋Ÿญ ์šด์ „ํ•˜๋Š” ์ผ (2027 ๋…„), ํŒ๋งคํ•˜๋Š” ์ผ (2031 ๋…„๊นŒ์ง€), ๋ฒ ์ŠคํŠธ ์…€๋Ÿฌ ์„œ์  ์ง‘ํ•„ํ•˜๋Š” ์ผ (2049 ๋…„๊นŒ์ง€) ๋ฐ ์™ธ๊ณผ ์˜์‚ฌ๋กœ ํ•˜๋Š”์ผ (2053 ๋…„๊นŒ์ง€)๋“ฑ ํ–ฅํ›„ 10 ๋…„ ๋™์•ˆ AI๊ฐ€ ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์„ ๋Šฅ๊ฐ€ ํ•  ๊ฒƒ์ด๋ผ๊ณ  ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ AI๊ฐ€ 45 ๋…„ ์•ˆ์— ๋ชจ๋“  ์—…๋ฌด์—์„œ ์ธ๊ฐ„์„ ๋›ฐ์–ด๋„˜๊ณ  120 ๋…„ ๋‚ด์— ๋ชจ๋“  ์ธ๊ฐ„์˜ ์ง์—…์„ ์ž๋™ํ™” ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค๊ณ  ๋ฏฟ๊ณ  ์žˆ์œผ๋ฉฐ, ์•„์‹œ์•„๊ณ„ ์‘๋‹ต์ž๊ฐ€ ๋ถ๋ฏธ ๋ฏธ๊ตญ์ธ๋ณด๋‹ค ํ›จ์”ฌ ๋นจ๋ฆฌ ์ด ๋‚ ์งœ๋ฅผ ์˜ˆ์ƒํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ์—ฐ๊ตฌ์› ๋ฐ ์ •์ฑ… ์ž…์•ˆ์ž๋“ค ์‚ฌ์ด์—์„œ AI์˜ ์ถ”์„ธ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์— ๊ด€ํ•œ ํ† ๋ก ์˜ ์žฅ์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค."

When Will AI Exceed Human Performance? Evidence from AI Experts



Can AI Be Your Paralegal? (Only if You Follow This 5-Step Verification Process)

  Blogging_CS · Sep 20, 2025 · 10 min read Generative AI promises to revo...