Showing posts with label LLM. Show all posts
Showing posts with label LLM. Show all posts

Wednesday, September 3, 2025

LLM-Powered Patent Search from A to Z: From Basic Prompts to Advanced Strategy

 

Still Stumped by Patent Searches with LLMs? This post breaks down how to use the latest AI Large Language Models (LLMs) to maximize the accuracy and efficiency of your patent searches, including specific model selection methods and advanced ‘deep research’ prompting techniques.

Hi there! Have you ever spent days, or even weeks, lost in a sea of patent documents, trying to find that one piece of information you need? I’ve definitely been there. The anxiety of wondering, ‘Is my idea truly novel?’ can keep you up at night. But thanks to the latest Large Language Models (LLMs), the whole paradigm of patent searching is changing. It’s even possible for an AI to conduct its own ‘deep research’ by diving into multiple sources. Today, I’m going to share some practical examples of ‘prompt engineering’ that I’ve learned firsthand to help you unlock 200% of your LLM’s potential!

Prompt Engineering Tricks to Boost Accuracy by 200%

Choosing the right AI model is important, but the success of your patent search ultimately depends on how you ask your questions. That’s where ‘prompt engineering’ comes in. It’s the key to making the AI accurately grasp your intent and deliver the best possible results. Let’s dive into some real-world examples.

Heads Up!
LLMs are not perfect. They can sometimes confidently present false information, a phenomenon known as ‘hallucination.’ It’s crucial to get into the habit of cross-referencing any patent numbers or critical details the AI provides with an official database.

 

1. Using Chain-of-Thought for Step-by-Step Reasoning

When you have a complex analysis task, asking the AI to ‘show its work’ by thinking step-by-step can reduce logical errors and improve accuracy.

Prompt Example:
Analyze the validity of a patent for an ‘autonomous driving technology that fuses camera and LiDAR sensor data’ by following these steps.

Step 1: Define the core technical components (camera, LiDAR, data fusion).
Step 2: Based on the defined components, generate 5 sets of search keywords for the USPTO database.
Step 3: From the search results, select the 3 most similar prior art patents.
Step 4: Compare the key claims of the selected patents with our technology, and provide your final opinion on the patentability of our tech.

 

2. Using Real-Time External Information (RAG & ReAct)

LLMs only know information up to their last training date. To get the latest patent data, you need to instruct them to search external databases in real-time.

Prompt Example:
You are a patent analyst. Using your search tool, find all patent publications on KIPRIS related to ‘Quantum Dot Displays’ published since January 1, 2024.

1. Organize the list of patents by application number, title of invention, and applicant.
2. Summarize the overall technology trends and analyze the core technical focus of the top 3 applicants.
3. Based on your analysis, predict which technologies in this field are likely to be promising over the next two years.

 

3. Activating the “Deep Research” Function

The latest LLMs can do more than just a single search. They have ‘deep research’ capabilities that can synthesize information from multiple websites, academic papers, and technical documents to create a comprehensive report, much like a human researcher.

Prompt Example:
Activate your deep research function. Write an in-depth report on the global R&D trends for ‘next-generation semiconductor materials using Graphene.’ The report must include the following:

1. The main challenges of the current technology and the latest research trends aimed at solving them (reference and summarize at least 3 reputable academic papers or tech articles).
2. An analysis of the top 5 companies and research institutions leading this field and their key patent portfolios.
3. The expected technology development roadmap and market outlook for the next 5 years.
4. Clearly cite the source (URL) for all information referenced in the report.

 

4. Exploring Multiple Paths (Tree of Thoughts)

This is useful for solving strategic problems with no single right answer, like designing around a patent or charting a new R&D direction. You have the AI explore and evaluate multiple possible scenarios.

Prompt Example:
Propose three new design concepts for a ‘secondary battery electrode structure’ that do not infringe on claim 1 of U.S. Patent ‘US 1234567 B2’.

1. For each design, clearly explain which elements of the original patent were changed and how.
2. Evaluate the technical advantages, expected performance, and potential drawbacks of each design.
3. Select the design you believe has the highest likelihood of avoiding infringement and achieving commercial success, and provide a detailed argument for your choice.

πŸ’‘ Pro Tip!
The common thread in all great prompts is that they give the AI a clear ‘role,’ explain the ‘context,’ and demand a ‘specific output format.’ Just remembering these three things will dramatically improve your results.
πŸ’‘

LLM Patent Search: Key Takeaways

Assign a Role: Give the AI a specific expert role, like “You are a patent attorney.”
Step-by-Step Thinking: For complex analyses, instruct the AI to use step-by-step reasoning (CoT) to improve logical accuracy.
Advanced Strategies:
Use Deep Research and Tree of Thoughts to generate expert-level reports.
Cross-Verification is a Must: Always be aware of AI hallucinations and verify important information against original sources.

Frequently Asked Questions

Q: Is the ‘deep research’ function available on all LLMs?
A: No, not yet. It’s more of an advanced feature typically found in the latest premium versions of LLMs like Perplexity, Gemini, and ChatGPT. However, you can mimic a similar effect by using the standard search function and asking questions in multiple, sequential steps.
Q: Can I trust the search results from an LLM 100%?
A: No, you absolutely cannot. An LLM is a powerful assistant, not a substitute for a qualified expert’s final judgment. Due to hallucinations, it can invent patent numbers or misrepresent content. It is essential to always verify its findings against the original documents and have them reviewed by a professional.
Q: Prompt engineering seems complicated. Where should I start?
A: An easy way to start is by modifying the examples shown today. Just applying three techniques—’assigning a role,’ ‘specifying the format,’ and ‘requesting step-by-step thinking’—will dramatically improve the quality of your results.

Patent searching is no longer the tedious, uphill battle it once was. How you wield the powerful tool of LLMs can change the speed of your R&D and business. I hope you’ll use the tips I’ve shared today to create smarter innovations with AI. If you have any more questions, feel free to ask in the comments!

초보자λ₯Ό μœ„ν•œ LLM 기반 νŠΉν—ˆ 검색 A to Z: κΈ°λ³Έ 기법뢀터 λ”₯λ¦¬μ„œμΉ˜κΉŒμ§€

 

LLM으둜 νŠΉν—ˆ 검색, 아직도 λ§‰λ§‰ν•˜μ‹ κ°€μš”? 이 κΈ€μ—μ„œλŠ” μ΅œμ‹  AI μ–Έμ–΄ λͺ¨λΈ(LLM)을 ν™œμš©ν•΄ νŠΉν—ˆ κ²€μƒ‰μ˜ 정확도와 νš¨μœ¨μ„±μ„ κ·ΉλŒ€ν™”ν•˜λŠ” ꡬ체적인 λͺ¨λΈ 선택법과 ‘λ”₯λ¦¬μ„œμΉ˜’λ₯Ό ν¬ν•¨ν•œ ν”„λ‘¬ν”„νŠΈ μ—”μ§€λ‹ˆμ–΄λ§ 비법을 총정리해 λ“œλ¦½λ‹ˆλ‹€.

μ•ˆλ…•ν•˜μ„Έμš”! ν˜Ήμ‹œ λ°©λŒ€ν•œ νŠΉν—ˆ λ¬Έν—Œ μ†μ—μ„œ μ›ν•˜λŠ” 정보λ₯Ό μ°ΎκΈ° μœ„ν•΄ λͺ‡ λ‚  며칠을 ν—€λ§€λ³Έ κ²½ν—˜, λ‹€λ“€ ν•œ λ²ˆμ―€μ€ μžˆμœΌμ‹œμ£ ? ‘λ‚΄ 아이디어가 정말 μƒˆλ‘œμš΄ 게 λ§žμ„κΉŒ?’ ν•˜λŠ” λΆˆμ•ˆκ°μ— 밀잠 μ„€μΉ˜λŠ” 일도 λ§Žμ•˜κ³ μš”. ν•˜μ§€λ§Œ μ΅œμ‹  κ±°λŒ€ μ–Έμ–΄ λͺ¨λΈ(LLM) 덕뢄에 이제 νŠΉν—ˆ κ²€μƒ‰μ˜ νŒ¨λŸ¬λ‹€μž„μ΄ λ°”λ€Œκ³  μžˆμŠ΅λ‹ˆλ‹€. 심지어 AIκ°€ 슀슀둜 μ—¬λŸ¬ 자료λ₯Ό 깊이 있게 μ‘°μ‚¬ν•˜λŠ” ‘λ”₯λ¦¬μ„œμΉ˜’κΉŒμ§€ κ°€λŠ₯ν•΄μ‘Œμ£ . μ˜€λŠ˜μ€ μ œκ°€ 직접 ν„°λ“ν•œ, LLM의 잠재λ ₯을 200% λŒμ–΄λ‚΄λŠ” ‘ν”„λ‘¬ν”„νŠΈ μ—”μ§€λ‹ˆμ–΄λ§’ μ‹€μ „ μ˜ˆμ‹œλ“€μ„ μ§‘μ€‘μ μœΌλ‘œ λ³΄μ—¬λ“œλ¦΄κ²Œμš”!

정확도 200% μ˜¬λ¦¬λŠ” ν”„λ‘¬ν”„νŠΈ μ—”μ§€λ‹ˆμ–΄λ§ 비법

쒋은 AI λͺ¨λΈμ„ κ³ λ₯΄λŠ” 것도 μ€‘μš”ν•˜μ§€λ§Œ, νŠΉν—ˆ κ²€μƒ‰μ˜ μ„±νŒ¨λŠ” κ²°κ΅­ AIμ—κ²Œ ‘μ–΄λ–»κ²Œ μ§ˆλ¬Έν•˜λŠ”μ§€’에 λ‹¬λ €μžˆμŠ΅λ‹ˆλ‹€. λ°”λ‘œ ‘ν”„λ‘¬ν”„νŠΈ μ—”μ§€λ‹ˆμ–΄λ§’이죠. AIκ°€ μ—¬λŸ¬λΆ„μ˜ μ˜λ„λ₯Ό μ •ν™•νžˆ νŒŒμ•…ν•˜κ³  졜고의 결과물을 λ‚΄λ†“κ²Œ λ§Œλ“œλŠ” 핡심 κΈ°μˆ μž…λ‹ˆλ‹€. μ§€κΈˆλΆ€ν„° μ‹€μ „ μ˜ˆμ‹œμ™€ ν•¨κ»˜ μ•Œμ•„λ³΄κ² μŠ΅λ‹ˆλ‹€.

μ£Όμ˜ν•˜μ„Έμš”!
LLM은 μ™„λ²½ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€. λ•Œλ•Œλ‘œ 사싀이 μ•„λ‹Œ 정보λ₯Ό κ·ΈλŸ΄λ“―ν•˜κ²Œ λ§Œλ“€μ–΄λ‚΄λŠ” ‘ν™˜κ°(Hallucination)’ ν˜„μƒμ„ 보일 수 μžˆμŠ΅λ‹ˆλ‹€. λ”°λΌμ„œ AIκ°€ μ œμ‹œν•œ νŠΉν—ˆ λ²ˆν˜Έλ‚˜ λ‚΄μš©μ€ λ°˜λ“œμ‹œ 원문 λ°μ΄ν„°λ² μ΄μŠ€μ—μ„œ ꡐ차 ν™•μΈν•˜λŠ” μŠ΅κ΄€μ΄ μ€‘μš”ν•©λ‹ˆλ‹€.

 

1. 단계별 μΆ”λ‘ (Chain-of-Thought) ν™œμš© μ˜ˆμ‹œ

λ³΅μž‘ν•œ 뢄석을 μš”μ²­ν•  λ•Œ, AIμ—κ²Œ μƒκ°μ˜ 과정을 λ‹¨κ³„λ³„λ‘œ 보여달라고 μš”μ²­ν•˜λ©΄ 논리적 였λ₯˜λ₯Ό 쀄이고 정확도λ₯Ό 높일 수 μžˆμŠ΅λ‹ˆλ‹€.

ν”„λ‘¬ν”„νŠΈ μ˜ˆμ‹œ:
‘카메라와 라이닀 μ„Όμ„œ 데이터λ₯Ό μœ΅ν•©ν•˜λŠ” μžμœ¨μ£Όν–‰ 기술’에 λŒ€ν•œ νŠΉν—ˆ μœ νš¨μ„±μ„ λ‹¨κ³„λ³„λ‘œ λΆ„μ„ν•΄μ€˜.

1단계: 핡심 기술 κ΅¬μ„±μš”μ†Œ(카메라, 라이닀, 데이터 μœ΅ν•©)λ₯Ό μ •μ˜ν•΄μ€˜.
2단계: μ •μ˜λœ κ΅¬μ„±μš”μ†Œλ₯Ό λ°”νƒ•μœΌλ‘œ USPTO λ°μ΄ν„°λ² μ΄μŠ€μ—μ„œ μ‚¬μš©ν•  검색 ν‚€μ›Œλ“œ μ‘°ν•© 5개λ₯Ό μƒμ„±ν•΄μ€˜.
3단계: μƒμ„±λœ ν‚€μ›Œλ“œλ‘œ κ²€μƒ‰λœ μ„ ν–‰ 기술 쀑 κ°€μž₯ μœ μ‚¬ν•œ νŠΉν—ˆ 3개λ₯Ό μ„ μ •ν•΄μ€˜.
4단계: μ„ μ •λœ νŠΉν—ˆλ“€μ˜ 핡심 청ꡬ항과 우리 기술의 차이점을 비ꡐ λΆ„μ„ν•˜κ³ , μ΅œμ’…μ μœΌλ‘œ 우리 기술의 νŠΉν—ˆ 등둝 κ°€λŠ₯성에 λŒ€ν•œ λ„ˆμ˜ μ˜κ²¬μ„ μ œμ‹œν•΄μ€˜.

 

2. μ™ΈλΆ€ 정보 μ‹€μ‹œκ°„ ν™œμš©(RAG & ReAct) μ˜ˆμ‹œ

LLM은 ν•™μŠ΅λœ μ‹œμ κΉŒμ§€μ˜ μ •λ³΄λ§Œ μ•Œκ³  μžˆμŠ΅λ‹ˆλ‹€. μ΅œμ‹  νŠΉν—ˆ 정보λ₯Ό λ°˜μ˜ν•˜κΈ° μœ„ν•΄μ„œλŠ” μ™ΈλΆ€ λ°μ΄ν„°λ² μ΄μŠ€λ₯Ό μ‹€μ‹œκ°„μœΌλ‘œ κ²€μƒ‰ν•˜λ„λ‘ μ§€μ‹œν•΄μ•Ό ν•©λ‹ˆλ‹€.

ν”„λ‘¬ν”„νŠΈ μ˜ˆμ‹œ:
λ„ˆλŠ” νŠΉν—ˆ 뢄석 μ „λ¬Έκ°€μ•Ό. λ„ˆμ˜ 검색 κΈ°λŠ₯을 μ‚¬μš©ν•΄μ„œ 2024λ…„ 1μ›” 1일 이후 KIPRIS에 곡개된 ‘μ–‘μžμ (Quantum Dot) λ””μŠ€ν”Œλ ˆμ΄’ κ΄€λ ¨ νŠΉν—ˆ 곡보λ₯Ό λͺ¨λ‘ μ°Ύμ•„μ€˜.

1. κ²€μƒ‰λœ νŠΉν—ˆ 리슀트λ₯Ό μΆœμ›λ²ˆν˜Έ, 발λͺ…μ˜ λͺ…μΉ­, μΆœμ›μΈ 순으둜 μ •λ¦¬ν•΄μ€˜.
2. 전체 기술 νŠΈλ Œλ“œλ₯Ό μš”μ•½ν•˜κ³ , κ°€μž₯ 많이 μΆœμ›ν•œ μƒμœ„ 3개 κΈ°μ—…μ˜ 핡심 기술 λ°©ν–₯을 λΆ„μ„ν•΄μ€˜.
3. 뢄석 κ²°κ³Όλ₯Ό λ°”νƒ•μœΌλ‘œ ν–₯ν›„ 2λ…„κ°„ 이 λΆ„μ•Όμ—μ„œ μœ λ§ν•  κ²ƒμœΌλ‘œ μ˜ˆμƒλ˜λŠ” κΈ°μˆ μ„ μ˜ˆμΈ‘ν•΄μ€˜.

 

3. λ”₯λ¦¬μ„œμΉ˜(Deep Research) κΈ°λŠ₯ ν™œμ„±ν™” μ˜ˆμ‹œ

μ΅œμ‹  LLM듀은 λ‹¨μˆœνžˆ ν•œλ‘ 개의 λ¬Έμ„œλ₯Ό κ²€μƒ‰ν•˜λŠ” 것을 λ„˜μ–΄, μ—¬λŸ¬ μ›Ήμ‚¬μ΄νŠΈμ™€ λ…Όλ¬Έ, 기술 λ¬Έμ„œλ₯Ό μ’…ν•©ν•˜μ—¬ ν•˜λ‚˜μ˜ μ™„μ„±λœ λ³΄κ³ μ„œλ₯Ό λ§Œλ“œλŠ” ‘λ”₯λ¦¬μ„œμΉ˜’ κΈ°λŠ₯을 μ œκ³΅ν•©λ‹ˆλ‹€. 이 κΈ°λŠ₯을 ν™œμ„±ν™”ν•˜λ©΄ μ‚¬λžŒμ΄ 직접 λ¦¬μ„œμΉ˜λ₯Ό μˆ˜ν–‰ν•˜λŠ” 것과 μœ μ‚¬ν•œ μˆ˜μ€€μ˜ 심도 μžˆλŠ” κ²°κ³Όλ₯Ό 얻을 수 μžˆμŠ΅λ‹ˆλ‹€.

ν”„λ‘¬ν”„νŠΈ μ˜ˆμ‹œ:
λ„ˆμ˜ λ”₯λ¦¬μ„œμΉ˜ κΈ°λŠ₯을 ν™œμ„±ν™”ν•΄μ€˜. ‘κ·Έλž˜ν•€(Graphene)을 μ΄μš©ν•œ μ°¨μ„ΈλŒ€ λ°˜λ„μ²΄ μ†Œμž¬’의 κΈ€λ‘œλ²Œ 기술 개발 동ν–₯에 λŒ€ν•œ 심측 λ³΄κ³ μ„œλ₯Ό μž‘μ„±ν•΄μ€˜. λ³΄κ³ μ„œμ—λŠ” λ‹€μŒ λ‚΄μš©μ΄ λ°˜λ“œμ‹œ ν¬ν•¨λ˜μ–΄μ•Ό ν•΄:

1. ν˜„μž¬ 기술의 μ£Όμš” λ‚œμ œμ™€ 이λ₯Ό ν•΄κ²°ν•˜λ €λŠ” μ΅œμ‹  연ꡬ 동ν–₯ (곡신λ ₯ μžˆλŠ” ν•™μˆ  λ…Όλ¬Έ 및 기술 기사 3개 이상 μ°Έμ‘° 및 μš”μ•½).
2. 이 기술 λΆ„μ•Όλ₯Ό μ„ λ„ν•˜λŠ” TOP 5 κΈ°μ—… 및 연ꡬ κΈ°κ΄€κ³Ό κ·Έλ“€μ˜ 핡심 νŠΉν—ˆ 포트폴리였 뢄석.
3. ν–₯ν›„ 5λ…„κ°„ μ˜ˆμƒλ˜λŠ” 기술 λ°œμ „ λ‘œλ“œλ§΅κ³Ό μ‹œμž₯ 전망.
4. λ³΄κ³ μ„œμ— 인용된 λͺ¨λ“  μ •λ³΄μ˜ 좜처(URL)λ₯Ό λͺ…ν™•νžˆ λ°ν˜€μ€˜.

 

4. 닀쀑 경둜 탐색(Tree of Thoughts) ν™œμš© μ˜ˆμ‹œ

νŠΉν—ˆ μΉ¨ν•΄λ₯Ό νšŒν”Όν•˜λŠ” μ„€κ³„μ•ˆμ΄λ‚˜ μƒˆλ‘œμš΄ μ—°κ΅¬κ°œλ°œ λ°©ν–₯처럼 정닡이 μ—†λŠ” μ „λž΅μ  문제λ₯Ό ν•΄κ²°ν•  λ•Œ μœ μš©ν•©λ‹ˆλ‹€. AIμ—κ²Œ μ—¬λŸ¬ κ°€λŠ₯ν•œ μ‹œλ‚˜λ¦¬μ˜€λ₯Ό νƒμƒ‰ν•˜κ³  ν‰κ°€ν•˜κ²Œ λ§Œλ“­λ‹ˆλ‹€.

ν”„λ‘¬ν”„νŠΈ μ˜ˆμ‹œ:
λ―Έκ΅­ νŠΉν—ˆ ‘US 1234567 B2’의 독립항 1항을 μΉ¨ν•΄ν•˜μ§€ μ•ŠλŠ” μƒˆλ‘œμš΄ ‘2μ°¨ μ „μ§€ μ „κ·Ή ꡬ쑰’ μ„€κ³„μ•ˆμ„ 3κ°€μ§€ μ œμ•ˆν•΄μ€˜.

1. 각 μ„€κ³„μ•ˆμ— λŒ€ν•΄, 원본 νŠΉν—ˆμ˜ μ–΄λ–€ κ΅¬μ„±μš”μ†Œλ₯Ό μ–΄λ–»κ²Œ λ³€κ²½ν–ˆλŠ”μ§€ λͺ…ν™•νžˆ μ„€λͺ…ν•΄μ€˜.
2. 각 μ„€κ³„μ•ˆμ˜ 기술적 μž₯점, μ˜ˆμƒλ˜λŠ” μ„±λŠ₯, 그리고 잠재적 단점을 ν‰κ°€ν•΄μ€˜.
3. 3κ°€μ§€ μ„€κ³„μ•ˆ 쀑 νŠΉν—ˆ νšŒν”Ό κ°€λŠ₯μ„±κ³Ό 상업적 성곡 κ°€λŠ₯성이 κ°€μž₯ λ†’λ‹€κ³  μƒκ°λ˜λŠ” μ•ˆμ„ ν•˜λ‚˜ μ„ νƒν•˜κ³ , κ·Έ 이유λ₯Ό μƒμ„Ένžˆ λ…Όμ¦ν•΄μ€˜.

πŸ’‘ μ•Œμ•„λ‘μ„Έμš”!
쒋은 ν”„λ‘¬ν”„νŠΈμ˜ 곡톡점은 AIμ—κ²Œ λͺ…ν™•ν•œ ‘μ—­ν• ’을 λΆ€μ—¬ν•˜κ³ , ‘λ°°κ²½ 상황’을 μ„€λͺ…ν•˜λ©°, ‘ꡬ체적인 μ‚°μΆœλ¬Ό ν˜•νƒœ’λ₯Ό μš”κ΅¬ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€. 이 μ„Έ κ°€μ§€λ§Œ 기얡해도 LLM의 ν™œμš©λ„κ°€ 극적으둜 λ†’μ•„μ§‘λ‹ˆλ‹€.
πŸ’‘

LLM νŠΉν—ˆ 검색 핡심 μš”μ•½

μ—­ν•  λΆ€μ—¬: “λ„ˆλŠ” 변리사야”와 같이 AIμ—κ²Œ ꡬ체적인 μ „λ¬Έκ°€ 역할을 λΆ€μ—¬ν•˜μ„Έμš”.
단계별 사고: λ³΅μž‘ν•œ 뢄석은 AIμ—κ²Œ 단계별 μΆ”λ‘ (CoT)을 μ§€μ‹œν•˜μ—¬ 논리적 정확도λ₯Ό λ†’μ΄μ„Έμš”.
κ³ κΈ‰ μ „λž΅ ν™œμš©:
λ”₯λ¦¬μ„œμΉ˜μ™€ λ‹€μ€‘κ²½λ‘œ νƒμƒ‰μœΌλ‘œ μ „λ¬Έκ°€ μˆ˜μ€€μ˜ 뢄석 λ³΄κ³ μ„œλ₯Ό λ§Œλ“œμ„Έμš”.
ꡐ차 검증 ν•„μˆ˜: AI의 ν™˜κ° κ°€λŠ₯성을 항상 μΈμ§€ν•˜κ³ , μ€‘μš”ν•œ μ •λ³΄λŠ” λ°˜λ“œμ‹œ μ›λ¬ΈμœΌλ‘œ ν™•μΈν•˜μ„Έμš”.

자주 λ¬»λŠ” 질문

Q: ‘λ”₯λ¦¬μ„œμΉ˜’ κΈ°λŠ₯은 λͺ¨λ“  LLMμ—μ„œ μ‚¬μš©ν•  수 μžˆλ‚˜μš”?
A: μ•„λ‹ˆμš”, 아직은 λͺ¨λ“  λͺ¨λΈμ—μ„œ μ§€μ›ν•˜μ§€λŠ” μ•ŠμŠ΅λ‹ˆλ‹€. 주둜 Perplexity, Gemini, ChatGPT λ“± μ΅œμ‹  유료 λ²„μ „μ˜ LLMμ—μ„œ μ œκ³΅ν•˜λŠ” κ³ κΈ‰ κΈ°λŠ₯에 κ°€κΉμŠ΅λ‹ˆλ‹€. ν•˜μ§€λ§Œ 일반 검색 κΈ°λŠ₯을 ν™œμš©ν•˜μ—¬ μ—¬λŸ¬ 단계에 걸쳐 μ§ˆλ¬Έν•¨μœΌλ‘œμ¨ μœ μ‚¬ν•œ 효과λ₯Ό λ‚Ό μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€.
Q: LLM의 검색 κ²°κ³Όλ₯Ό 100% μ‹ λ’°ν•  수 μžˆλ‚˜μš”?
A: μ•„λ‹ˆμš”, μ ˆλŒ€ μ•ˆ λ©λ‹ˆλ‹€. LLM은 κ°•λ ₯ν•œ ‘보쑰’ 도ꡬ이지, μ΅œμ’… νŒλ‹¨μ„ λ‚΄λ¦¬λŠ” μ „λ¬Έκ°€λ₯Ό λŒ€μ²΄ν•  μˆ˜λŠ” μ—†μŠ΅λ‹ˆλ‹€. 특히 ν™˜κ° ν˜„μƒμœΌλ‘œ 인해 μ—†λŠ” νŠΉν—ˆ 번호λ₯Ό λ§Œλ“€μ–΄λ‚΄κ±°λ‚˜ λ‚΄μš©μ„ μ™œκ³‘ν•  수 μžˆμœΌλ‹ˆ, 항상 원문을 ν™•μΈν•˜κ³  μ „λ¬Έκ°€μ˜ κ²€ν† λ₯Ό κ±°μΉ˜λŠ” 것이 ν•„μˆ˜μž…λ‹ˆλ‹€.
Q: ν”„λ‘¬ν”„νŠΈ μ—”μ§€λ‹ˆμ–΄λ§, 뭐뢀터 μ‹œμž‘ν•΄μ•Ό ν• κΉŒμš”?
A: κ°€μž₯ μ‰¬μš΄ μ‹œμž‘μ€ 였늘 λ³΄μ—¬λ“œλ¦° μ˜ˆμ‹œλ“€μ„ μ‘°κΈˆμ”© λ°”κΏ”λ³΄λŠ” κ²ƒμž…λ‹ˆλ‹€. ‘μ—­ν•  λΆ€μ—¬’, ‘ꡬ체적인 ν˜•μ‹ μ§€μ •’, ‘단계별 사고 μš”μ²­’ 이 μ„Έ κ°€μ§€λ§Œ μ‘μš©ν•΄λ„ 결과물의 질이 크게 ν–₯μƒλ˜λŠ” 것을 μ²΄κ°ν•˜μ‹€ 수 μžˆμ„ κ±°μ˜ˆμš”.

νŠΉν—ˆ 검색은 이제 더 이상 μ§€λ£¨ν•˜κ³  νž˜λ“  싸움이 μ•„λ‹™λ‹ˆλ‹€. LLMμ΄λΌλŠ” κ°•λ ₯ν•œ 무기λ₯Ό μ–΄λ–»κ²Œ μ‚¬μš©ν•˜λŠλƒμ— 따라 μ—¬λŸ¬λΆ„μ˜ 연ꡬ 개발과 λΉ„μ¦ˆλ‹ˆμŠ€μ˜ 속도가 λ‹¬λΌμ§ˆ 수 μžˆμŠ΅λ‹ˆλ‹€. 였늘 μ•Œλ €λ“œλ¦° νŒλ“€μ„ κΌ­ ν™œμš©ν•΄ λ³΄μ‹œκ³ , AI와 ν•¨κ»˜ 더 μŠ€λ§ˆνŠΈν•œ ν˜μ‹ μ„ λ§Œλ“€μ–΄κ°€μ‹œκΈΈ λ°”λžλ‹ˆλ‹€. 더 κΆκΈˆν•œ 점이 μžˆλ‹€λ©΄ μ–Έμ œλ“ μ§€ λŒ“κΈ€λ‘œ λ¬Όμ–΄λ΄μ£Όμ„Έμš”!

Tuesday, September 2, 2025

λ§ˆν‹΄ νŒŒμšΈλŸ¬κ°€ λ§ν•˜λŠ” LLMκ³Ό μ†Œν”„νŠΈμ›¨μ–΄ 개발의 미래: 'ν™˜κ°'은 결함이 μ•„λ‹ˆλ‹€? Martin Fowler on the Future of LLM and Software Development: Is 'Hallucination' Not a Flaw?

 

LLM의 'ν™˜κ°'이 결함이 μ•„λ‹ˆλΌκ³ ?
Is LLM's 'Hallucination' Not a Flaw?

세계적인 μ†Œν”„νŠΈμ›¨μ–΄ 개발 사상가 λ§ˆν‹΄ νŒŒμšΈλŸ¬κ°€ μ œμ‹œν•˜λŠ” LLM μ‹œλŒ€μ˜ 개발 νŒ¨λŸ¬λ‹€μž„! 그의 λ‚ μΉ΄λ‘œμš΄ 톡찰을 톡해 'λΉ„κ²°μ •μ„±'κ³Ό μƒˆλ‘œμš΄ λ³΄μ•ˆ μœ„ν˜‘ λ“± κ°œλ°œμžκ°€ λ§ˆμ£Όν•  미래λ₯Ό 미리 확인해 λ³΄μ„Έμš”.
The development paradigm for the LLM era presented by world-renowned software development thinker Martin Fowler! Get a preview of the future developers will face, including 'non-determinism' and new security threats, through his sharp insights.

μ•ˆλ…•ν•˜μ„Έμš”! μš”μ¦˜ λ„ˆλ‚˜ ν•  것 없이 AI, 특히 LLM(λŒ€κ·œλͺ¨ μ–Έμ–΄ λͺ¨λΈ)을 업무에 ν™œμš©ν•˜κ³  있죠. μ½”λ“œλ₯Ό 짜게 ν•˜κ±°λ‚˜, 아이디어λ₯Ό μ–»κ±°λ‚˜, μ‹¬μ§€μ–΄λŠ” λ³΅μž‘ν•œ κ°œλ…μ„ μ„€λͺ…해달라고 ν•˜κΈ°λ„ ν•˜κ³ μš”. μ € μ—­μ‹œ LLM의 νŽΈλ¦¬ν•¨μ— ν‘Ή λΉ μ Έ μ§€λ‚΄κ³  μžˆλŠ”λ°μš”, 문득 이런 생각이 λ“€λ”λΌκ³ μš”. 'κ³Όμ—° μš°λ¦¬λŠ” 이 도ꡬλ₯Ό μ œλŒ€λ‘œ μ΄ν•΄ν•˜κ³  μ‚¬μš©ν•˜κ³  μžˆλŠ” 걸까?'
Hello! Nowadays, everyone is using AI, especially LLMs (Large Language Models), for work. We make them write code, get ideas, or even ask them to explain complex concepts. I'm also deeply immersed in the convenience of LLMs, but a thought suddenly struck me: 'Are we truly understanding and using this tool correctly?'

이런 고민의 와쀑에 μ†Œν”„νŠΈμ›¨μ–΄ 개발 λΆ„μ•Όμ˜ 세계적인 ꡬ루, λ§ˆν‹΄ 파울러(Martin Fowler)κ°€ 졜근 LLMκ³Ό μ†Œν”„νŠΈμ›¨μ–΄ κ°œλ°œμ— λŒ€ν•œ 생각을 μ •λ¦¬ν•œ 글을 읽게 λ˜μ—ˆμŠ΅λ‹ˆλ‹€. λ‹¨μˆœνžˆ 'LLM은 λŒ€λ‹¨ν•΄!' μˆ˜μ€€μ„ λ„˜μ–΄, κ·Έ 본질적인 νŠΉμ„±κ³Ό μš°λ¦¬κ°€ μ•žμœΌλ‘œ λ§ˆμ£Όν•˜κ²Œ 될 변화에 λŒ€ν•œ 깊이 μžˆλŠ” 톡찰이 담겨 μžˆμ—ˆμ£ . μ˜€λŠ˜μ€ μ—¬λŸ¬λΆ„κ³Ό ν•¨κ»˜ 그의 생각을 따라가 보렀고 ν•©λ‹ˆλ‹€. 😊
While pondering this, I came across an article by Martin Fowler, a world-renowned guru in the software development field, who recently summarized his thoughts on LLMs and software development. It went beyond a simple 'LLMs are amazing!' level, offering deep insights into their fundamental nature and the changes we will face. Today, I'd like to explore his thoughts with you. 😊

LLM and Software Development

 

λ§ˆν‹΄ 파울러, LLM의 ν˜„μ£Όμ†Œλ₯Ό λ§ν•˜λ‹€ πŸ€”
Martin Fowler on the Current State of LLMs πŸ€”

λ§ˆν‹΄ νŒŒμšΈλŸ¬λŠ” λ¨Όμ € ν˜„μž¬ AI 산업이 λͺ…λ°±ν•œ '버블' μƒνƒœμ— μžˆλ‹€κ³  μ§„λ‹¨ν•©λ‹ˆλ‹€. ν•˜μ§€λ§Œ μ—­μ‚¬μ μœΌλ‘œ λͺ¨λ“  기술 ν˜μ‹ μ΄ κ·Έλž˜μ™”λ“―, 버블이 κΊΌμ§„ 후에도 μ•„λ§ˆμ‘΄μ²˜λŸΌ 살아남아 μƒˆλ‘œμš΄ μ‹œλŒ€λ₯Ό μ—¬λŠ” 기업이 λ‚˜νƒ€λ‚  것이라고 λ΄€μ–΄μš”. μ€‘μš”ν•œ 건, μ§€κΈˆ λ‹¨κ³„μ—μ„œλŠ” ν”„λ‘œκ·Έλž˜λ°μ˜ λ―Έλž˜λ‚˜ νŠΉμ • μ§μ—…μ˜ μ•ˆμ •μ„±μ— λŒ€ν•΄ λˆ„κ΅¬λ„ ν™•μ‹€νžˆ μ•Œ 수 μ—†λ‹€λŠ” μ μž…λ‹ˆλ‹€.
Martin Fowler first diagnoses the current AI industry as being in a clear 'bubble' state. However, as with all technological innovations historically, he believes that even after the bubble bursts, companies like Amazon will survive and usher in a new era. The important thing is that at this stage, no one can be certain about the future of programming or the job security of specific professions.

κ·Έλž˜μ„œ κ·ΈλŠ” μ„£λΆ€λ₯Έ μ˜ˆμΈ‘λ³΄λ‹€λŠ” 각자 LLM을 직접 μ‚¬μš©ν•΄λ³΄κ³ , κ·Έ κ²½ν—˜μ„ 적극적으둜 κ³΅μœ ν•˜λŠ” μ‹€ν—˜μ μΈ μžμ„Έκ°€ μ€‘μš”ν•˜λ‹€κ³  κ°•μ‘°ν•©λ‹ˆλ‹€. 우리 λͺ¨λ‘κ°€ μƒˆλ‘œμš΄ 도ꡬλ₯Ό νƒν—˜ν•˜λŠ” κ°œμ²™μžκ°€ λ˜μ–΄μ•Ό ν•œλ‹€λŠ” 의미겠죠?
Therefore, he emphasizes that an experimental attitude of personally using LLMs and actively sharing those experiences is more important than making hasty predictions. This implies that we all need to become pioneers exploring this new tool, right?

πŸ’‘ μ•Œμ•„λ‘μ„Έμš”!
πŸ’‘ Good to know!

νŒŒμšΈλŸ¬λŠ” 졜근 LLM ν™œμš©μ— λŒ€ν•œ 섀문쑰사듀이 μ‹€μ œ μ‚¬μš© 흐름을 μ œλŒ€λ‘œ λ°˜μ˜ν•˜μ§€ λͺ»ν•  수 μžˆλ‹€κ³  μ§€μ ν–ˆμ–΄μš”. λ‹€μ–‘ν•œ λͺ¨λΈμ˜ κΈ°λŠ₯ 차이도 크기 λ•Œλ¬Έμ—, λ‹€λ₯Έ μ‚¬λžŒμ˜ μ˜κ²¬λ³΄λ‹€λŠ” μžμ‹ μ˜ 직접적인 κ²½ν—˜μ„ λ―ΏλŠ” 것이 더 μ€‘μš”ν•΄ λ³΄μž…λ‹ˆλ‹€.
Fowler pointed out that recent surveys on LLM usage may not accurately reflect actual usage patterns. Since there are also significant differences in the capabilities of various models, it seems more important to trust your own direct experience rather than the opinions of others.

 

LLM의 ν™˜κ°: 결함이 μ•„λ‹Œ 본질적 νŠΉμ§• 🧠
LLM Hallucination: An Intrinsic Feature, Not a Flaw 🧠

이번 κΈ€μ—μ„œ κ°€μž₯ ν₯λ―Έλ‘œμ› λ˜ λΆ€λΆ„μž…λ‹ˆλ‹€. νŒŒμšΈλŸ¬λŠ” LLM이 사싀이 μ•„λ‹Œ 정보λ₯Ό κ·ΈλŸ΄λ“―ν•˜κ²Œ λ§Œλ“€μ–΄λ‚΄λŠ” 'ν™˜κ°(Hallucination)' ν˜„μƒμ„ λ‹¨μˆœν•œ '결함'이 μ•„λ‹ˆλΌ '본질적인 νŠΉμ„±'으둜 봐야 ν•œλ‹€κ³  μ£Όμž₯ν•©λ‹ˆλ‹€. 정말 좩격적이지 μ•Šλ‚˜μš”? LLM은 κ²°κ΅­ 'μœ μš©μ„±μ΄ μžˆλŠ” ν™˜κ°μ„ μƒμ„±ν•˜κΈ° μœ„ν•œ 도ꡬ'λΌλŠ” κ΄€μ μž…λ‹ˆλ‹€.
This was the most interesting part of the article for me. Fowler argues that the 'hallucination' phenomenon, where LLMs create plausible but untrue information, should be seen as an 'intrinsic feature' rather than a mere 'flaw'. Isn't that shocking? The perspective is that LLMs are ultimately 'tools for generating useful hallucinations'.

이런 κ΄€μ μ—μ„œ 보면, μš°λ¦¬λŠ” LLM의 닡변을 λ§Ήλͺ©μ μœΌλ‘œ μ‹ λ’°ν•΄μ„œλŠ” μ•ˆ λ©λ‹ˆλ‹€. 였히렀 λ™μΌν•œ μ§ˆλ¬Έμ„ μ—¬λŸ¬ 번, ν‘œν˜„μ„ λ°”κΏ”κ°€λ©° 던져보고 λ‹΅λ³€μ˜ 일관성을 ν™•μΈν•˜λŠ” μž‘μ—…μ΄ ν•„μˆ˜μ μž…λ‹ˆλ‹€. 특히 숫자 계산과 같이 결정적인 닡이 ν•„μš”ν•œ λ¬Έμ œμ— LLM을 직접 μ‚¬μš©ν•˜λ €λŠ” μ‹œλ„λŠ” μ μ ˆν•˜μ§€ μ•Šλ‹€κ³  λ§λΆ™μ˜€μŠ΅λ‹ˆλ‹€.
From this viewpoint, we should not blindly trust the answers from LLMs. Instead, it is essential to ask the same question multiple times with different phrasing to check for consistency in the answers. He added that attempting to use LLMs directly for problems requiring definitive answers, such as numerical calculations, is not appropriate.

⚠️ μ£Όμ˜ν•˜μ„Έμš”!
⚠️ Be careful!

νŒŒμšΈλŸ¬λŠ” LLM을 'μ£Όλ‹ˆμ–΄ 개발자'에 λΉ„μœ ν•˜λŠ” 것에 κ°•ν•˜κ²Œ λΉ„νŒν•©λ‹ˆλ‹€. LLM은 "λͺ¨λ“  ν…ŒμŠ€νŠΈ 톡과!"라고 μžμ‹  있게 λ§ν•˜λ©΄μ„œ μ‹€μ œλ‘œλŠ” ν…ŒμŠ€νŠΈλ₯Ό μ‹€νŒ¨μ‹œν‚€λŠ” μ½”λ“œλ₯Ό λ‚΄λ†“λŠ” κ²½μš°κ°€ ν”ν•˜μ£ . λ§Œμ•½ 인간 λ™λ£Œκ°€ 이런 행동을 λ°˜λ³΅ν•œλ‹€λ©΄, μ‹ λ’°λ₯Ό μžƒκ³  인사 문제둜 μ΄μ–΄μ§ˆ μˆ˜μ€€μ˜ μ‹¬κ°ν•œ κ²°ν•¨μ΄λΌλŠ” κ²ƒμž…λ‹ˆλ‹€. LLM은 λ™λ£Œκ°€ μ•„λ‹Œ, κ°•λ ₯ν•˜μ§€λ§Œ μ‹€μˆ˜λ₯Ό μ €μ§€λ₯Ό 수 μžˆλŠ” '도ꡬ'둜 인식해야 ν•©λ‹ˆλ‹€.
Fowler strongly criticizes the analogy of an LLM to a 'junior developer'. LLMs often confidently state "All tests passed!" while providing code that actually fails tests. If a human colleague were to do this repeatedly, it would be a serious flaw leading to a loss of trust and personnel issues. LLMs should be recognized not as colleagues, but as powerful 'tools' that can make mistakes.

 

μ†Œν”„νŠΈμ›¨μ–΄ 곡학, 'λΉ„κ²°μ •μ„±' μ‹œλŒ€λ‘œμ˜ μ „ν™˜ 🎲
Software Engineering's Shift to an Era of 'Non-Determinism' 🎲

전톡적인 μ†Œν”„νŠΈμ›¨μ–΄ 곡학은 '결정둠적'인 세계 μœ„μ— μ„Έμ›Œμ Έ μžˆμ—ˆμŠ΅λ‹ˆλ‹€. '2+2'λ₯Ό μž…λ ₯ν•˜λ©΄ '4'κ°€ λ‚˜μ™€μ•Ό ν•˜λ“―, λͺ¨λ“  것은 예츑 κ°€λŠ₯ν•˜κ³  일관적이어야 ν–ˆμ£ . μ˜ˆμƒκ³Ό λ‹€λ₯Έ κ²°κ³ΌλŠ” '버그'둜 μ·¨κΈ‰λ˜μ–΄ μ¦‰μ‹œ μˆ˜μ •λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
Traditional software engineering was built on a 'deterministic' world. Just as inputting '2+2' must yield '4', everything had to be predictable and consistent. Unexpected results were treated as 'bugs' and fixed immediately.

ν•˜μ§€λ§Œ LLM의 λ“±μž₯은 μ΄λŸ¬ν•œ νŒ¨λŸ¬λ‹€μž„μ„ 근본적으둜 λ°”κΎΈκ³  μžˆμŠ΅λ‹ˆλ‹€. νŒŒμšΈλŸ¬λŠ” LLM이 μ†Œν”„νŠΈμ›¨μ–΄ 곡학에 'λΉ„κ²°μ •μ„±(Non-Determinism)'을 λ„μž…ν•˜λŠ” μ „ν™˜μ μ΄ 될 것이라고 μ§„λ‹¨ν•©λ‹ˆλ‹€. λ™μΌν•œ μš”μ²­μ—λ„ LLM은 λ―Έλ¬˜ν•˜κ²Œ λ‹€λ₯Έ 결과물을 내놓을 수 있으며, κ·ΈλŸ΄λ“―ν•΄ λ³΄μ΄λŠ” μ½”λ“œ μ•ˆμ— 치λͺ…적인 였λ₯˜λ₯Ό μˆ¨κ²¨λ†“κΈ°λ„ ν•©λ‹ˆλ‹€.
However, the emergence of LLMs is fundamentally changing this paradigm. Fowler diagnoses that LLMs will be a turning point, introducing 'Non-Determinism' into software engineering. Even with the same request, an LLM can produce subtly different outputs and may hide critical errors within plausible-looking code.

이제 개발자의 역할은 λ‹¨μˆœνžˆ μ½”λ“œλ₯Ό μž‘μ„±ν•˜λŠ” 것을 λ„˜μ–΄, LLM이 λ§Œλ“€μ–΄λ‚Έ λΆˆν™•μ‹€ν•œ 결과물을 λΉ„νŒμ μœΌλ‘œ κ²€μ¦ν•˜κ³  κ΄€λ¦¬ν•˜λŠ” λŠ₯λ ₯이 λ”μš± μ€‘μš”ν•΄μ‘ŒμŠ΅λ‹ˆλ‹€. μ•„λž˜ ν‘œλ‘œ κ·Έ 차이λ₯Ό κ°„λ‹¨νžˆ μ •λ¦¬ν•΄λ΄€μŠ΅λ‹ˆλ‹€.
Now, the role of a developer has become more about the ability to critically verify and manage the uncertain outputs generated by LLMs, going beyond simply writing code. I've summarized the differences in the table below.

ꡬ뢄
Category
전톡적 μ†Œν”„νŠΈμ›¨μ–΄ (결정적)
Traditional Software (Deterministic)
LLM 기반 μ†Œν”„νŠΈμ›¨μ–΄ (비결정적)
LLM-based Software (Non-deterministic)
κ²°κ³Ό μ˜ˆμΈ‘μ„±
Result Predictability
동일 μž…λ ₯, 동일 κ²°κ³Ό 보μž₯
Same input, same output guaranteed
동일 μž…λ ₯에도 λ‹€λ₯Έ κ²°κ³Ό κ°€λŠ₯
Different outputs possible for the same input
였λ₯˜μ˜ μ •μ˜
Definition of Error
μ˜ˆμΈ‘μ„ λ²—μ–΄λ‚œ λͺ¨λ“  λ™μž‘ (버그)
Any behavior deviating from prediction (Bug)
결과의 λΆˆν™•μ‹€μ„± (본질적 νŠΉμ„±)
Uncertainty of results (Intrinsic feature)
개발자 μ—­ν• 
Developer's Role
μ •ν™•ν•œ 둜직 κ΅¬ν˜„ 및 디버깅
Implementing precise logic and debugging
κ²°κ³Όλ¬Ό 검증 및 λΆˆν™•μ‹€μ„± 관리
Verifying outputs and managing uncertainty

 

ν”Όν•  수 μ—†λŠ” μœ„ν˜‘: λ³΄μ•ˆ 문제 πŸ”
The Unavoidable Threat: Security Issues πŸ”

λ§ˆμ§€λ§‰μœΌλ‘œ νŒŒμšΈλŸ¬λŠ” LLM이 μ†Œν”„νŠΈμ›¨μ–΄ μ‹œμŠ€ν…œμ˜ 곡격 ν‘œλ©΄μ„ κ΄‘λ²”μœ„ν•˜κ²Œ ν™•λŒ€ν•œλ‹€λŠ” μ‹¬κ°ν•œ κ²½κ³ λ₯Ό λ˜μ§‘λ‹ˆλ‹€. 특히 λΈŒλΌμš°μ € μ—μ΄μ „νŠΈμ™€ 같이 λΉ„κ³΅κ°œ 데이터 μ ‘κ·Ό, μ™ΈλΆ€ 톡신, μ‹ λ’°ν•  수 μ—†λŠ” μ½˜ν…μΈ  λ…ΈμΆœμ΄λΌλŠ” '치λͺ…적 삼쀑' μœ„ν—˜μ„ κ°€μ§„ 도ꡬ듀은 근본적으둜 μ•ˆμ „ν•˜κ²Œ λ§Œλ“€κΈ° μ–΄λ ΅λ‹€λŠ” 것이 그의 μ˜κ²¬μž…λ‹ˆλ‹€.
Finally, Fowler issues a serious warning that LLMs significantly expand the attack surface of software systems. He opines that tools with the 'lethal triple' risk of accessing private data, communicating externally, and being exposed to untrusted content, such as browser agents, are fundamentally difficult to secure.

예λ₯Ό λ“€μ–΄, μ›Ή νŽ˜μ΄μ§€μ— μΈκ°„μ˜ λˆˆμ—λŠ” 보이지 μ•ŠλŠ” λͺ…λ Ήμ–΄λ₯Ό 숨겨 LLM을 속이고, 이λ₯Ό 톡해 λ―Όκ°ν•œ 개인 정보λ₯Ό μœ μΆœν•˜λ„λ‘ μœ λ„ν•˜λŠ” 곡격이 κ°€λŠ₯ν•΄μ§‘λ‹ˆλ‹€. κ°œλ°œμžλ“€μ€ 이제 μ½”λ“œμ˜ κΈ°λŠ₯뿐만 μ•„λ‹ˆλΌ, LLMκ³Ό μƒν˜Έμž‘μš©ν•˜λŠ” λͺ¨λ“  κ³Όμ •μ—μ„œ λ°œμƒν•  수 μžˆλŠ” μƒˆλ‘œμš΄ λ³΄μ•ˆ 취약점을 κ³ λ €ν•΄μ•Ό ν•©λ‹ˆλ‹€.
For example, it becomes possible to trick an LLM by hiding commands invisible to the human eye on a web page, thereby inducing it to leak sensitive personal information. Developers must now consider not only the functionality of their code but also new security vulnerabilities that can arise in all processes interacting with LLMs.

πŸ’‘

λ§ˆν‹΄ 파울러의 LLM 핡심 μΈμ‚¬μ΄νŠΈ
Martin Fowler's Core LLM Insights

ν™˜κ°μ€ 본질:
Hallucination is Intrinsic:
LLM의 ν™˜κ°μ€ '결함'이 μ•„λ‹Œ '본질적 νŠΉμ§•'으둜 이해해야 ν•©λ‹ˆλ‹€.
LLM's hallucination must be understood as an 'intrinsic feature,' not a 'flaw.'
λΉ„κ²°μ •μ„±μ˜ μ‹œλŒ€:
The Era of Non-Determinism:
μ†Œν”„νŠΈμ›¨μ–΄ 곡학이 예츑 λΆˆκ°€λŠ₯성을 κ΄€λ¦¬ν•˜λŠ” μ‹œλŒ€λ‘œ μ§„μž…ν–ˆμŠ΅λ‹ˆλ‹€.
Software engineering has entered an era of managing unpredictability.
검증은 ν•„μˆ˜:
Verification is a Must:
LLM의 결과물은 μ£Όλ‹ˆμ–΄ κ°œλ°œμžκ°€ μ•„λ‹Œ, 검증이 ν•„μˆ˜μ μΈ '도ꡬ'의 μ‚°μΆœλ¬Όμž…λ‹ˆλ‹€.
The output of an LLM is not that of a junior developer, but the product of a 'tool' that requires mandatory verification.
λ³΄μ•ˆ μœ„ν˜‘:
Security Threats:
LLM은 μ‹œμŠ€ν…œμ˜ 곡격 ν‘œλ©΄μ„ λ„“νžˆλŠ” μƒˆλ‘œμš΄ λ³΄μ•ˆ λ³€μˆ˜μž…λ‹ˆλ‹€.
LLMs are a new security variable that broadens a system's attack surface.

자주 λ¬»λŠ” 질문 ❓
Frequently Asked Questions ❓

Q: λ§ˆν‹΄ νŒŒμšΈλŸ¬κ°€ 'ν™˜κ°'을 결함이 μ•„λ‹Œ 본질둜 봐야 ν•œλ‹€κ³  λ§ν•˜λŠ” μ΄μœ λŠ” λ¬΄μ—‡μΈκ°€μš”?
Q: Why does Martin Fowler say that 'hallucination' should be seen as an intrinsic feature, not a flaw?
A: LLM은 λ°©λŒ€ν•œ 데이터λ₯Ό 기반으둜 κ°€μž₯ κ·ΈλŸ΄λ“―ν•œ λ‹€μŒ 단어λ₯Ό μ˜ˆμΈ‘ν•˜μ—¬ λ¬Έμž₯을 μƒμ„±ν•˜λŠ” λͺ¨λΈμ΄κΈ° λ•Œλ¬Έμž…λ‹ˆλ‹€. 이 κ³Όμ •μ—μ„œ 사싀관계와 λ¬΄κ΄€ν•˜κ²Œ λ§€λ„λŸ¬μš΄ λ¬Έμž₯을 λ§Œλ“€μ–΄λ‚΄λŠ” 'ν™˜κ°'은 μžμ—°μŠ€λŸ¬μš΄ 결과물이며, 이 νŠΉμ„±μ„ 이해해야 LLM을 μ˜¬λ°”λ₯΄κ²Œ ν™œμš©ν•  수 μžˆλ‹€λŠ” μ˜λ―Έμž…λ‹ˆλ‹€.
A: This is because LLMs are models that generate sentences by predicting the most plausible next word based on vast amounts of data. In this process, 'hallucination,' which creates fluent sentences regardless of factual accuracy, is a natural outcome. Understanding this characteristic is key to using LLMs correctly.
Q: μ†Œν”„νŠΈμ›¨μ–΄ κ³΅ν•™μ˜ 'λΉ„κ²°μ •μ„±'μ΄λž€ 무엇을 μ˜λ―Έν•˜λ©°, μ™œ μ€‘μš”ν•œκ°€μš”?
Q: What does 'non-determinism' in software engineering mean, and why is it important?
A: 'λΉ„κ²°μ •μ„±'μ΄λž€ λ™μΌν•œ μž…λ ₯에 λŒ€ν•΄ 항상 λ™μΌν•œ κ²°κ³Όκ°€ λ‚˜μ˜€μ§€ μ•ŠλŠ” νŠΉμ„±μ„ μ˜λ―Έν•©λ‹ˆλ‹€. 전톡적인 μ†Œν”„νŠΈμ›¨μ–΄λŠ” 100% 예츑 κ°€λŠ₯ν•΄μ•Ό ν–ˆμ§€λ§Œ, LLM은 같은 μ§ˆλ¬Έμ—λ„ λ‹€λ₯Έ 닡변을 쀄 수 μžˆμŠ΅λ‹ˆλ‹€. 이 λΆˆν™•μ‹€μ„±μ„ μ΄ν•΄ν•˜κ³  κ΄€λ¦¬ν•˜λŠ” 것이 LLM μ‹œλŒ€ 개발자의 핡심 μ—­λŸ‰μ΄ λ˜μ—ˆμŠ΅λ‹ˆλ‹€.
A: 'Non-determinism' refers to the characteristic where the same input does not always produce the same output. While traditional software had to be 100% predictable, an LLM can give different answers to the same question. Understanding and managing this uncertainty has become a core competency for developers in the age of LLMs.
Q: LLM이 μƒμ„±ν•œ μ½”λ“œλ₯Ό μ‹ λ’°ν•˜κ³  λ°”λ‘œ μ‚¬μš©ν•΄λ„ λ κΉŒμš”?
Q: Can I trust and use the code generated by an LLM immediately?
A: μ•„λ‹ˆμš”, μ ˆλŒ€ μ•ˆ λ©λ‹ˆλ‹€. λ§ˆν‹΄ νŒŒμšΈλŸ¬λŠ” LLM이 κ·ΈλŸ΄λ“―ν•˜μ§€λ§Œ μž‘λ™ν•˜μ§€ μ•Šκ±°λ‚˜, λ³΄μ•ˆμ— μ·¨μ•½ν•œ μ½”λ“œλ₯Ό 생성할 수 μžˆλ‹€κ³  κ²½κ³ ν•©λ‹ˆλ‹€. μƒμ„±λœ μ½”λ“œλŠ” λ°˜λ“œμ‹œ κ°œλ°œμžκ°€ 직접 κ²€ν† , ν…ŒμŠ€νŠΈ, κ²€μ¦ν•˜λŠ” 과정을 거쳐야 ν•©λ‹ˆλ‹€.
A: No, absolutely not. Martin Fowler warns that LLMs can generate code that looks plausible but doesn't work or is insecure. The generated code must be reviewed, tested, and verified by a developer.
Q: LLM을 μ‚¬μš©ν•˜λ©΄ μ™œ λ³΄μ•ˆ μœ„ν˜‘μ΄ μ»€μ§€λ‚˜μš”?
Q: Why do security threats increase with the use of LLMs?
A: LLM은 μ™ΈλΆ€ 데이터와 μƒν˜Έμž‘μš©ν•˜κ³ , λ•Œλ‘œλŠ” λ―Όκ°ν•œ 정보에 μ ‘κ·Όν•  수 있기 λ•Œλ¬Έμž…λ‹ˆλ‹€. μ•…μ˜μ μΈ μ‚¬μš©μžκ°€ μ›Ήμ‚¬μ΄νŠΈλ‚˜ μž…λ ₯값에 보이지 μ•ŠλŠ” λͺ…λ Ήμ–΄λ₯Ό 숨겨 LLM을 μ‘°μ’…(ν”„λ‘¬ν”„νŠΈ μΈμ μ…˜)ν•˜μ—¬ 정보λ₯Ό μœ μΆœν•˜κ±°λ‚˜ μ‹œμŠ€ν…œμ„ κ³΅κ²©ν•˜λŠ” μƒˆλ‘œμš΄ ν˜•νƒœμ˜ λ³΄μ•ˆ μœ„ν˜‘μ΄ λ°œμƒν•  수 μžˆμŠ΅λ‹ˆλ‹€.
A: Because LLMs interact with external data and can sometimes access sensitive information. Malicious users can hide invisible commands in websites or inputs to manipulate the LLM (prompt injection), leading to new types of security threats such as data leakage or system attacks.

λ§ˆν‹΄ 파울러의 톡찰은 LLMμ΄λΌλŠ” μƒˆλ‘œμš΄ 도ꡬλ₯Ό μ–΄λ–»κ²Œ 바라보고 μ‚¬μš©ν•΄μ•Ό ν•˜λŠ”μ§€μ— λŒ€ν•œ μ€‘μš”ν•œ κ°€μ΄λ“œλ₯Ό μ œμ‹œν•©λ‹ˆλ‹€. λ‹¨μˆœνžˆ νŽΈλ¦¬ν•œ μ½”λ“œ 생성기λ₯Ό λ„˜μ–΄, 우리 개발 ν™˜κ²½μ˜ 근본적인 νŒ¨λŸ¬λ‹€μž„μ„ λ°”κΎΈλŠ” μ‘΄μž¬μž„μ„ 인식해야 ν•©λ‹ˆλ‹€. 그의 μ‘°μ–Έμ²˜λŸΌ, λ‘λ €μ›Œν•˜κ±°λ‚˜ λ§Ήμ‹ ν•˜κΈ°λ³΄λ‹€λŠ” 적극적으둜 μ‹€ν—˜ν•˜κ³  κ²½ν—˜μ„ κ³΅μœ ν•˜λ©° 이 κ±°λŒ€ν•œ λ³€ν™”μ˜ 물결에 ν˜„λͺ…ν•˜κ²Œ μ˜¬λΌνƒ€μ•Ό ν•  λ•Œμž…λ‹ˆλ‹€.
Martin Fowler's insights provide an important guide on how to view and use the new tool that is the LLM. We must recognize it not just as a convenient code generator, but as an entity that is changing the fundamental paradigm of our development environment. As he advises, now is the time to wisely ride this massive wave of change by experimenting and sharing experiences, rather than fearing or blindly trusting it.

μ—¬λŸ¬λΆ„μ€ LLM에 λŒ€ν•΄ μ–΄λ–»κ²Œ μƒκ°ν•˜μ‹œλ‚˜μš”? 개발 κ³Όμ •μ—μ„œ κ²ͺμ—ˆλ˜ ν₯미둜운 κ²½ν—˜μ΄ μžˆλ‹€λ©΄ λŒ“κΈ€λ‘œ κ³΅μœ ν•΄μ£Όμ„Έμš”! 😊
What are your thoughts on LLMs? If you have any interesting experiences from your development process, please share them in the comments! 😊

LLM-Powered Patent Search from A to Z: From Basic Prompts to Advanced Strategy

  Still Stumped by Patent Searches with LLMs? This post breaks down how to use the latest AI Large Language Models (LLMs) to maximize t...