Showing posts with label 특허 분석. Show all posts
Showing posts with label 특허 분석. Show all posts

Wednesday, September 3, 2025

초보자를 위한 LLM 기반 특허 검색 A to Z: 기본 기법부터 딥리서치까지

 

LLM으로 특허 검색, 아직도 막막하신가요? 이 글에서는 최신 AI 언어 모델(LLM)을 활용해 특허 검색의 정확도와 효율성을 극대화하는 구체적인 모델 선택법과 ‘딥리서치’를 포함한 프롬프트 엔지니어링 비법을 총정리해 드립니다.

안녕하세요! 혹시 방대한 특허 문헌 속에서 원하는 정보를 찾기 위해 몇 날 며칠을 헤매본 경험, 다들 한 번쯤은 있으시죠? ‘내 아이디어가 정말 새로운 게 맞을까?’ 하는 불안감에 밤잠 설치는 일도 많았고요. 하지만 최신 거대 언어 모델(LLM) 덕분에 이제 특허 검색의 패러다임이 바뀌고 있습니다. 심지어 AI가 스스로 여러 자료를 깊이 있게 조사하는 ‘딥리서치’까지 가능해졌죠. 오늘은 제가 직접 터득한, LLM의 잠재력을 200% 끌어내는 ‘프롬프트 엔지니어링’ 실전 예시들을 집중적으로 보여드릴게요!

정확도 200% 올리는 프롬프트 엔지니어링 비법

좋은 AI 모델을 고르는 것도 중요하지만, 특허 검색의 성패는 결국 AI에게 ‘어떻게 질문하는지’에 달려있습니다. 바로 ‘프롬프트 엔지니어링’이죠. AI가 여러분의 의도를 정확히 파악하고 최고의 결과물을 내놓게 만드는 핵심 기술입니다. 지금부터 실전 예시와 함께 알아보겠습니다.

주의하세요!
LLM은 완벽하지 않습니다. 때때로 사실이 아닌 정보를 그럴듯하게 만들어내는 ‘환각(Hallucination)’ 현상을 보일 수 있습니다. 따라서 AI가 제시한 특허 번호나 내용은 반드시 원문 데이터베이스에서 교차 확인하는 습관이 중요합니다.

 

1. 단계별 추론(Chain-of-Thought) 활용 예시

복잡한 분석을 요청할 때, AI에게 생각의 과정을 단계별로 보여달라고 요청하면 논리적 오류를 줄이고 정확도를 높일 수 있습니다.

프롬프트 예시:
‘카메라와 라이다 센서 데이터를 융합하는 자율주행 기술’에 대한 특허 유효성을 단계별로 분석해줘.

1단계: 핵심 기술 구성요소(카메라, 라이다, 데이터 융합)를 정의해줘.
2단계: 정의된 구성요소를 바탕으로 USPTO 데이터베이스에서 사용할 검색 키워드 조합 5개를 생성해줘.
3단계: 생성된 키워드로 검색된 선행 기술 중 가장 유사한 특허 3개를 선정해줘.
4단계: 선정된 특허들의 핵심 청구항과 우리 기술의 차이점을 비교 분석하고, 최종적으로 우리 기술의 특허 등록 가능성에 대한 너의 의견을 제시해줘.

 

2. 외부 정보 실시간 활용(RAG & ReAct) 예시

LLM은 학습된 시점까지의 정보만 알고 있습니다. 최신 특허 정보를 반영하기 위해서는 외부 데이터베이스를 실시간으로 검색하도록 지시해야 합니다.

프롬프트 예시:
너는 특허 분석 전문가야. 너의 검색 기능을 사용해서 2024년 1월 1일 이후 KIPRIS에 공개된 ‘양자점(Quantum Dot) 디스플레이’ 관련 특허 공보를 모두 찾아줘.

1. 검색된 특허 리스트를 출원번호, 발명의 명칭, 출원인 순으로 정리해줘.
2. 전체 기술 트렌드를 요약하고, 가장 많이 출원한 상위 3개 기업의 핵심 기술 방향을 분석해줘.
3. 분석 결과를 바탕으로 향후 2년간 이 분야에서 유망할 것으로 예상되는 기술을 예측해줘.

 

3. 딥리서치(Deep Research) 기능 활성화 예시

최신 LLM들은 단순히 한두 개의 문서를 검색하는 것을 넘어, 여러 웹사이트와 논문, 기술 문서를 종합하여 하나의 완성된 보고서를 만드는 ‘딥리서치’ 기능을 제공합니다. 이 기능을 활성화하면 사람이 직접 리서치를 수행하는 것과 유사한 수준의 심도 있는 결과를 얻을 수 있습니다.

프롬프트 예시:
너의 딥리서치 기능을 활성화해줘. ‘그래핀(Graphene)을 이용한 차세대 반도체 소재’의 글로벌 기술 개발 동향에 대한 심층 보고서를 작성해줘. 보고서에는 다음 내용이 반드시 포함되어야 해:

1. 현재 기술의 주요 난제와 이를 해결하려는 최신 연구 동향 (공신력 있는 학술 논문 및 기술 기사 3개 이상 참조 및 요약).
2. 이 기술 분야를 선도하는 TOP 5 기업 및 연구 기관과 그들의 핵심 특허 포트폴리오 분석.
3. 향후 5년간 예상되는 기술 발전 로드맵과 시장 전망.
4. 보고서에 인용된 모든 정보의 출처(URL)를 명확히 밝혀줘.

 

4. 다중 경로 탐색(Tree of Thoughts) 활용 예시

특허 침해를 회피하는 설계안이나 새로운 연구개발 방향처럼 정답이 없는 전략적 문제를 해결할 때 유용합니다. AI에게 여러 가능한 시나리오를 탐색하고 평가하게 만듭니다.

프롬프트 예시:
미국 특허 ‘US 1234567 B2’의 독립항 1항을 침해하지 않는 새로운 ‘2차 전지 전극 구조’ 설계안을 3가지 제안해줘.

1. 각 설계안에 대해, 원본 특허의 어떤 구성요소를 어떻게 변경했는지 명확히 설명해줘.
2. 각 설계안의 기술적 장점, 예상되는 성능, 그리고 잠재적 단점을 평가해줘.
3. 3가지 설계안 중 특허 회피 가능성과 상업적 성공 가능성이 가장 높다고 생각되는 안을 하나 선택하고, 그 이유를 상세히 논증해줘.

💡 알아두세요!
좋은 프롬프트의 공통점은 AI에게 명확한 ‘역할’을 부여하고, ‘배경 상황’을 설명하며, ‘구체적인 산출물 형태’를 요구하는 것입니다. 이 세 가지만 기억해도 LLM의 활용도가 극적으로 높아집니다.
💡

LLM 특허 검색 핵심 요약

역할 부여: “너는 변리사야”와 같이 AI에게 구체적인 전문가 역할을 부여하세요.
단계별 사고: 복잡한 분석은 AI에게 단계별 추론(CoT)을 지시하여 논리적 정확도를 높이세요.
고급 전략 활용:
딥리서치와 다중경로 탐색으로 전문가 수준의 분석 보고서를 만드세요.
교차 검증 필수: AI의 환각 가능성을 항상 인지하고, 중요한 정보는 반드시 원문으로 확인하세요.

자주 묻는 질문

Q: ‘딥리서치’ 기능은 모든 LLM에서 사용할 수 있나요?
A: 아니요, 아직은 모든 모델에서 지원하지는 않습니다. 주로 Perplexity, Gemini, ChatGPT 등 최신 유료 버전의 LLM에서 제공하는 고급 기능에 가깝습니다. 하지만 일반 검색 기능을 활용하여 여러 단계에 걸쳐 질문함으로써 유사한 효과를 낼 수도 있습니다.
Q: LLM의 검색 결과를 100% 신뢰할 수 있나요?
A: 아니요, 절대 안 됩니다. LLM은 강력한 ‘보조’ 도구이지, 최종 판단을 내리는 전문가를 대체할 수는 없습니다. 특히 환각 현상으로 인해 없는 특허 번호를 만들어내거나 내용을 왜곡할 수 있으니, 항상 원문을 확인하고 전문가의 검토를 거치는 것이 필수입니다.
Q: 프롬프트 엔지니어링, 뭐부터 시작해야 할까요?
A: 가장 쉬운 시작은 오늘 보여드린 예시들을 조금씩 바꿔보는 것입니다. ‘역할 부여’, ‘구체적인 형식 지정’, ‘단계별 사고 요청’ 이 세 가지만 응용해도 결과물의 질이 크게 향상되는 것을 체감하실 수 있을 거예요.

특허 검색은 이제 더 이상 지루하고 힘든 싸움이 아닙니다. LLM이라는 강력한 무기를 어떻게 사용하느냐에 따라 여러분의 연구 개발과 비즈니스의 속도가 달라질 수 있습니다. 오늘 알려드린 팁들을 꼭 활용해 보시고, AI와 함께 더 스마트한 혁신을 만들어가시길 바랍니다. 더 궁금한 점이 있다면 언제든지 댓글로 물어봐주세요!

LLM-Powered Patent Search from A to Z: From Basic Prompts to Advanced Strategy

  Still Stumped by Patent Searches with LLMs? This post breaks down how to use the latest AI Large Language Models (LLMs) to maximize t...