Saturday, September 6, 2025

Patentability of LLM Prompts: Overcoming Abstract Idea Rejections

 

Can a Simple Command to an AI Be Patented? This article provides an in-depth analysis of how LLM prompt techniques can transcend mere ‘ideas’ to be recognized as concrete ‘technical inventions,’ exploring key strategies and legal standards across different countries.

It seems that almost no one around us thinks of protecting prompt techniques or prompts that instruct LLM models with patents. At first, I was also skeptical, wondering, ‘Can a simple command to a computer be patented?’ However, as I delved deeper into this topic, I came to the conclusion that it is entirely possible if certain conditions are met. This article is a summary of the thought process I went through, and please bear in mind that it may not yet be an academically established view. ๐Ÿ˜Š

 

๐Ÿค” Prompts Aren’t Patentable Because They’re Just ‘Human Thoughts,’ Right?

The first hurdle that comes to mind for many is the principle that ‘human mental processes’ are not patentable subject matter. In fact, the argument that “a prompt is fundamentally human involvement, and technology involving such human mental activity is not patentable” is one of the strongest reasons for rejection in patent examination. This standard has been particularly firm since the U.S. Supreme Court’s Alice Corp. v. CLS Bank decision. It means that merely implementing something on a computer that a person could do in their head is not enough to get a patent.

According to this logic, the act of instructing an AI through a prompt is ultimately an expression of human thought, so one could easily conclude that it cannot be patented. However, this argument is half right and half wrong. And this is precisely where our patent strategy begins.

๐Ÿ’ก Good to Know!
What patent law takes issue with as ‘human intervention’ is not the act of giving a command to a system itself. It refers to cases where the core idea of the invention remains at the level of a mental step that can be practically performed in the human mind. Therefore, the key is to prove that our prompt technology transcends this boundary.

 

๐Ÿ“Š A Shift in Perspective: From ‘Command’ to ‘Computer Control Technology’

The first step to unlocking the patentability of prompt technology is to change our perspective. We need to redefine our technology not as ‘a message sent from a human to an AI,’ but as ’a technology that controls the internal computational processes of a complex computer system (LLM) through structured data to solve a technical problem and achieve concrete performance improvements.’

If you take a close look at the algorithm of China’s DeepSeek-R1, you can see that it implements various prompt techniques as they are.

Think about it. The process of assigning a specific expert role to an LLM with billions of parameters, injecting complex library dependency information as context, and combining numerous constraints to control the generation of optimal code is clearly in a realm that ‘cannot practically be performed in the human mind.’ This is a crucial standard for recognizing patent eligibility in the guidelines and case law of the U.S. Patent and Trademark Office (USPTO).

 

๐ŸŒ A Comparative Look at Key Examination Standards of Major Patent Offices

The patentability of prompt technology is not assessed uniformly across all countries. If you are considering international filing, it is crucial to understand the subtle differences in perspective among major patent offices.

1. USPTO (United States Patent and Trademark Office) – Emphasis on the Abstract Idea Exception

The USPTO strictly applies the Alice/Mayo two-step test, which originated from Supreme Court case law. Instructions or general linguistic expressions that merely replace human thought processes can be dismissed as “abstract ideas.” However, if it can be demonstrated that the prompt is linked to a concrete technical implementation (e.g., improving model accuracy, optimizing specific hardware operations), there is a chance of it being recognized as patent-eligible subject matter.

2. EPO (European Patent Office) – Focus on Technical Effect

The EPO assesses based on “technical character” and “technical effect.” Simply presenting data input or linguistic rules is considered to lack inventive step, but if the prompt structure serves as a means to solve a technical problem (e.g., improving computational efficiency, optimizing memory usage, enhancing interaction with a specific device), it can be recognized as patent-eligible.

3. KIPO (Korean Intellectual Property Office) – Emphasis on Substantive Requirements for Software Inventions

KIPO places importance on the traditional requirement of “a creation of a technical idea utilizing the laws of nature.” Therefore, a prompt as a mere sentence or linguistic rule is not considered a technical idea, but if it is shown to be combined with a specific algorithm, hardware, or system to produce a concrete technical result, it can be recognized as an invention. In Korean practice, presenting a concrete system structure or processing flow is particularly persuasive.

Key Comparison Summary

Patent Office Key Requirement
USPTO (U.S.) Emphasis on ‘concrete technical implementation’ to avoid the abstract idea exception
EPO (Europe) Proof of ‘technical effect’ is key; simple data manipulation is insufficient
KIPO (Korea) Must be a technical idea using laws of nature + emphasis on systemic/structural implementation
⚠️ Implications for International Filing
The same “LLM prompt” technology could be at risk of being dismissed as an “abstract business method” in the United States, a “non-technical linguistic rule” in Europe, and a “mere idea” in Korea. Therefore, when considering international filing, a strategy that clearly articulates the ‘concrete system architecture’ and ‘measurable technical effects’ throughout the specification is essential as a common denominator.

 

๐Ÿงฎ A Practical Guide to Drafting Patent Claims (Detailed)

So, how should you draft patent claims to avoid the ‘human intervention’ attack and clearly establish that it is a ‘technical invention’? Let’s take a closer look at four key strategies.

1. Set the subject as the ‘computer (processor),’ not the ‘person.’

This is the most crucial step in shifting the focus of the invention from the ‘user’s mental activity’ to the ‘machine’s technical operation.’ It must be specified that all steps of the claim are performed by computer hardware (processor, memory, etc.).

  • Bad ๐Ÿ‘Ž: A method where a user specifies a persona to an LLM and generates code.
  • Good ๐Ÿ‘: A step where a processor, upon receiving a user’s input, assigns a professional persona for a specific programming language to the LLM.

2. Specify the prompt as ‘structured data.’

Instead of abstract expressions like ‘natural language prompt,’ you need to clarify that it is a concrete data structure processed by the computer. This shows that the invention is not just a simple idea.

  • Bad ๐Ÿ‘Ž: A step of providing a natural language prompt to the LLM.
  • Good ๐Ÿ‘: A step of generating and providing to the LLM a machine-readable context schema that includes library names and version constraints.

3. Claim ‘system performance improvement,’ not the result.

Instead of subjective results like ‘good code,’ you must specify objective and measurable effects that substantially improve the computer’s functionality. This is the core of ‘technical effect.’

  • Bad ๐Ÿ‘Ž: A step of generating optimized code.
  • Good ๐Ÿ‘: A step of controlling the LLM’s token generation probability through the schema to generate optimized code that reduces code compatibility errors and saves GPU memory usage.

4. Clarify the ‘automation’ process.

It should be specified that all processes after the initial input (data structuring, LLM control, result generation, etc.) are performed Automatically by the system without further human judgment, demonstrating that it is a reproducible technical process.

 

๐Ÿ“œ Reinforced Claim Example

By integrating all the strategies described above, you can construct a reinforced patent claim as follows.

[Claim] A computer-implemented method for generating optimized code, comprising:

  1. (a) parsing, by a processor, a user’s natural language input to generate a persona identifier defining an expert role for a specific programming language;
  2. (b) generating, by the processor, by referencing said input and an external code repository, structured context data including library names, version constraints, and hardware memory usage limits;
  3. (c) generating, by the processor, a control prompt including said persona identifier and structured context data and transmitting it to an LLM, thereby automatically controlling the internal token generation process of the LLM;
  4. (d) receiving, from said controlled LLM, optimized code that satisfies said constraints and has a compilation error rate below a predefined threshold and reduced GPU memory usage.

→ This example, instead of focusing on a simple result, greatly increases the chances of patent registration by clarifying system-level measurable technical effects such as ‘reduced compilation error rate’ and ‘reduced GPU memory usage.’

 

Frequently Asked Questions ❓

Q: Can a simple prompt like "write a poem about a cat" be patented?
A: No, that in itself is just an idea and would be difficult to patent. The subject of a patent would be a technical method or system that uses a prompt with a specific data structure (e.g., a schema defining poetic devices, rhyme schemes) to control an LLM to generate a poem, resulting in less computational resource usage or more accurate generation of a specific style of poetry.
Q: What are some specific ‘technical effects’ of prompt technology?
A: Typical examples include reduced compilation error rates in code generation, savings in computational resources like GPU and memory, shorter response generation times, and improved output accuracy for specific data formats (JSON, XML, etc.). The important thing is that these effects must be measurable and reproducible.
Q: Do I need to draft claims differently for each country when filing internationally?
A: Yes, while the core strategy is the same, it is advantageous to tailor the emphasis to the points that each patent office values. For example, in a U.S. (USPTO) specification, you would emphasize the ‘concrete improvement of computer functionality,’ in Europe (EPO), the ‘technical effect through solving a technical problem,’ and in Korea (KIPO), the ‘concreteness of the system configuration and processing flow.’

In conclusion, there is a clear path to protecting AI prompts with patents. However, it requires a strategic approach that goes beyond the idea of ‘what to ask’ and clearly demonstrates ‘how to technically control and improve a computer system.’ I hope this article provides a small clue to turning your innovative ideas into powerful intellectual property. If you have any more questions, feel free to ask in the comments~ ๐Ÿ˜Š

※ This blog post is intended for general informational purposes only and does not constitute legal advice on any specific matter. For individual legal issues, please consult a qualified professional.

‘์ถ”์ƒ์  ์•„์ด๋””์–ด’ ๊ณต๊ฒฉ์„ ํ”ผํ•˜๋Š” ํ”„๋กฌํ”„ํŠธ ํŠนํ—ˆ ์ „๋žต

 

AI์—๊ฒŒ ๋‚ด๋ฆฌ๋Š” ๋‹จ์ˆœํ•œ ๋ช…๋ น, ํŠนํ—ˆ๊ฐ€ ๋  ์ˆ˜ ์žˆ์„๊นŒ? LLM ํ”„๋กฌํ”„ํŠธ ๊ธฐ์ˆ ์ด ๋‹จ์ˆœํ•œ ‘์•„์ด๋””์–ด’๋ฅผ ๋„˜์–ด ์–ด๋–ป๊ฒŒ ๊ตฌ์ฒด์ ์ธ ‘๊ธฐ์ˆ ์  ๋ฐœ๋ช…’์œผ๋กœ ์ธ์ •๋ฐ›์„ ์ˆ˜ ์žˆ๋Š”์ง€, ๊ทธ ํ•ต์‹ฌ ์ „๋žต๊ณผ ๊ตญ๊ฐ€๋ณ„ ๋ฒ•์  ๊ธฐ์ค€์„ ์‹ฌ์ธต์ ์œผ๋กœ ๋ถ„์„ํ•ฉ๋‹ˆ๋‹ค.

์šฐ๋ฆฌ ์ฃผ๋ณ€์— LLM ๋ชจ๋ธ์—๊ฒŒ ์ง€์‹œํ•˜๋Š” ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฒ•์ด๋‚˜ ๊ทธ ํ”„๋กฌํ”„ํŠธ๋ฅผ ํŠนํ—ˆ๋กœ ๋ณดํ˜ธ๋ฐ›์„ ์ƒ๊ฐ์„ ํ•˜๋Š” ์‚ฌ๋žŒ์€ ๊ฑฐ์˜ ์—†๋Š” ๊ฒƒ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ €๋„ ์ฒ˜์Œ์—๋Š” ‘๋‹จ์ˆœํžˆ ์ปดํ“จํ„ฐ์— ๋‚ด๋ฆฌ๋Š” ๋ช…๋ น์ธ๋ฐ ์ด๊ฒŒ ํŠนํ—ˆ๊ฐ€ ๋ ๊นŒ?’ ํ•˜๋Š” ์˜๊ตฌ์‹ฌ์ด ๋“ค์—ˆ์ฃ . ํ•˜์ง€๋งŒ ์ด ์ฃผ์ œ์— ๋Œ€ํ•ด ๊นŠ์ด ํŒŒ๊ณ ๋“ค๋ฉด์„œ, ํŠน์ • ์กฐ๊ฑด์„ ๋งŒ์กฑํ•  ๊ฒฝ์šฐ ์ถฉ๋ถ„ํžˆ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒฐ๋ก ์— ์ด๋ฅด๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ธ€์€ ์ œ๊ฐ€ ๋„๋‹ฌํ•œ ์ผ๋ จ์˜ ์‚ฌ๊ณ  ๊ณผ์ •์„ ์ •๋ฆฌํ•œ ๊ฒƒ์ด๋ฉฐ, ์•„์ง ํ•™์ˆ ์ ์œผ๋กœ ํ™•๋ฆฝ๋œ ๊ฒฌํ•ด๋Š” ์•„๋‹ ์ˆ˜ ์žˆ๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•˜๊ณ  ์ฝ์–ด์ฃผ์‹œ๋ฉด ์ข‹๊ฒ ์Šต๋‹ˆ๋‹ค. ๐Ÿ˜Š

 

๐Ÿค” ํ”„๋กฌํ”„ํŠธ, ๋‹จ์ˆœํ•œ ‘์‚ฌ๋žŒ์˜ ์ƒ๊ฐ’์ด๋ผ ํŠนํ—ˆ๊ฐ€ ์•ˆ ๋œ๋‹ค๊ณ ์š”?

๋งŽ์€ ๋ถ„๋“ค์ด ๊ฐ€์žฅ ๋จผ์ € ๋– ์˜ฌ๋ฆฌ๋Š” ์žฅ๋ฒฝ์€ ๋ฐ”๋กœ ‘์ธ๊ฐ„์˜ ์ •์‹ ์  ํ™œ๋™’์€ ํŠนํ—ˆ ๋Œ€์ƒ์ด ์•„๋‹ˆ๋ผ๋Š” ์›์น™์ผ ๊ฒ๋‹ˆ๋‹ค. ์‹ค์ œ๋กœ “ํ”„๋กฌํ”„ํŠธ๋Š” ๊ทผ๋ณธ์ ์œผ๋กœ ์ธ๊ฐ„์˜ ๊ฐœ์ž…์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ์ธ๊ฐ„์˜ ์ •์‹ ์  ํ™œ๋™์ด ๊ฐœ์ž…๋˜๋Š” ๊ธฐ์ˆ ์€ ํŠนํ—ˆ ๋Œ€์ƒ์ด ์•„๋‹ˆ๋‹ค”๋ผ๋Š” ์ฃผ์žฅ์€ ํŠนํ—ˆ ์‹ฌ์‚ฌ์—์„œ ๊ฐ€์žฅ ๊ฐ•๋ ฅํ•œ ๊ฑฐ์ ˆ ์ด์œ  ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค. ์ด๋Š” ํŠนํžˆ ๋ฏธ๊ตญ ์—ฐ๋ฐฉ๋Œ€๋ฒ•์›์˜ ์•จ๋ฆฌ์Šค ํŒ๋ก€(Alice Corp. v. CLS Bank) ์ดํ›„ ๋”์šฑ ํ™•๊ณ ํ•ด์ง„ ๊ธฐ์ค€์ด์ฃ . ์‚ฌ๋žŒ์ด ๋จธ๋ฆฟ์†์œผ๋กœ ์ƒ๊ฐํ•ด์„œ ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ์„ ๋‹จ์ˆœํžˆ ์ปดํ“จํ„ฐ๋กœ ๊ตฌํ˜„ํ•œ ๊ฒƒ๋งŒ์œผ๋กœ๋Š” ํŠนํ—ˆ๋ฅผ ๋ฐ›์„ ์ˆ˜ ์—†๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.

์ด ๋…ผ๋ฆฌ์— ๋”ฐ๋ฅด๋ฉด, ์šฐ๋ฆฌ๊ฐ€ ํ”„๋กฌํ”„ํŠธ๋ฅผ ํ†ตํ•ด AI์—๊ฒŒ ๋ฌด์–ธ๊ฐ€๋ฅผ ์ง€์‹œํ•˜๋Š” ํ–‰์œ„๋Š” ๊ฒฐ๊ตญ ์‚ฌ๋žŒ์˜ ๋จธ๋ฆฟ์† ์ƒ๊ฐ์„ ํ‘œํ˜„ํ•œ ๊ฒƒ์ด๋‹ˆ, ํŠนํ—ˆ๊ฐ€ ๋  ์ˆ˜ ์—†๋‹ค๋Š” ๊ฒฐ๋ก ์— ์‰ฝ๊ฒŒ ๋‹ค๋‹ค๋ฅผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด ์ฃผ์žฅ์€ ์ ˆ๋ฐ˜์€ ๋งž๊ณ  ์ ˆ๋ฐ˜์€ ํ‹€๋ฆฝ๋‹ˆ๋‹ค. ๋ฐ”๋กœ ์—ฌ๊ธฐ์„œ๋ถ€ํ„ฐ ์šฐ๋ฆฌ์˜ ํŠนํ—ˆ ํ™•๋ณด ์ „๋žต์ด ์‹œ์ž‘๋ฉ๋‹ˆ๋‹ค.

๐Ÿ’ก ์•Œ์•„๋‘์„ธ์š”!
ํŠนํ—ˆ๋ฒ•์ด ๋ฌธ์ œ ์‚ผ๋Š” ‘์ธ๊ฐ„์˜ ๊ฐœ์ž…’์€ ์‹œ์Šคํ…œ์— ๋ช…๋ น์„ ๋‚ด๋ฆฌ๋Š” ํ–‰์œ„ ์ž์ฒด๊ฐ€ ์•„๋‹™๋‹ˆ๋‹ค. ๋ฐœ๋ช…์˜ ํ•ต์‹ฌ ์•„์ด๋””์–ด๊ฐ€ ์ธ๊ฐ„์˜ ๋จธ๋ฆฟ์†์—์„œ ์‹ค์งˆ์ ์œผ๋กœ ์ˆ˜ํ–‰๋  ์ˆ˜ ์žˆ๋Š” ์ •์‹ ์  ๋‹จ๊ณ„์— ๋จธ๋ฌด๋Š” ๊ฒฝ์šฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ์˜ ํ”„๋กฌํ”„ํŠธ ๊ธฐ์ˆ ์ด ์ด ๊ฒฝ๊ณ„๋ฅผ ๋„˜์–ด์„œ๋Š” ๊ฒƒ์ž„์„ ์ฆ๋ช…ํ•˜๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ์ž…๋‹ˆ๋‹ค.

 

๐Ÿ“Š ๊ด€์ ์˜ ์ „ํ™˜: ‘๋ช…๋ น์–ด’์—์„œ ‘์ปดํ“จํ„ฐ ์ œ์–ด ๊ธฐ์ˆ ’๋กœ

ํ”„๋กฌํ”„ํŠธ ๊ธฐ์ˆ ์˜ ํŠนํ—ˆ ๊ฐ€๋Šฅ์„ฑ์„ ์—ด๊ธฐ ์œ„ํ•œ ์ฒซ๊ฑธ์Œ์€ ๊ด€์ ์„ ๋ฐ”๊พธ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ธฐ์ˆ ์„ ‘์ธ๊ฐ„์ด AI์—๊ฒŒ ๋ณด๋‚ด๋Š” ๋ฉ”์‹œ์ง€’๊ฐ€ ์•„๋‹ˆ๋ผ, ’๋ณต์žกํ•œ ์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ(LLM)์˜ ๋‚ด๋ถ€ ์—ฐ์‚ฐ ๊ณผ์ •์„ ํŠน์ • ๊ตฌ์กฐ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ์ œ์–ดํ•˜์—ฌ, ๊ธฐ์ˆ ์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ  ๊ตฌ์ฒด์ ์ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์ด๋Œ์–ด๋‚ด๋Š” ๊ธฐ์ˆ ’๋กœ ์žฌ์ •์˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

์ค‘๊ตญ์˜ DeepSeek-R1์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐ€๋งŒํžˆ ๋“ค์—ฌ๋‹ค๋ณด๋ฉด, ๋‹ค์–‘ํ•œ ํ”„๋กฌํ”„ํŠธ ๊ธฐ๋ฒ•์„ ๊ทธ๋Œ€๋กœ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ƒ๊ฐํ•ด๋ณด์„ธ์š”. ์ˆ˜์‹ญ์–ต ๊ฐœ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฐ€์ง„ LLM์— ํŠน์ • ์ „๋ฌธ๊ฐ€ ์—ญํ• ์„ ๋ถ€์—ฌํ•˜๊ณ , ๋ณต์žกํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์˜์กด์„ฑ ์ •๋ณด๋ฅผ ์ปจํ…์ŠคํŠธ๋กœ ์ฃผ์ž…ํ•˜๋ฉฐ, ์ˆ˜๋งŽ์€ ์ œ์•ฝ ์กฐ๊ฑด์„ ์กฐํ•ฉํ•ด ์ตœ์ ์˜ ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•˜๋„๋ก ์ œ์–ดํ•˜๋Š” ๊ณผ์ •์€ ๋ช…๋ฐฑํžˆ ‘์ธ๊ฐ„์˜ ์ •์‹  ๋Šฅ๋ ฅ์œผ๋กœ๋Š” ์‹ค์งˆ์ ์œผ๋กœ ์ˆ˜ํ–‰ ๋ถˆ๊ฐ€๋Šฅํ•œ(cannot practically be performed in the human mind)’ ์˜์—ญ์ž…๋‹ˆ๋‹ค. ์ด๋Š” ๋ฏธ๊ตญ ํŠนํ—ˆ์ƒํ‘œ์ฒญ(USPTO)์˜ ๊ฐ€์ด๋“œ๋ผ์ธ์ด๋‚˜ ํŒ๋ก€์—์„œ๋„ ํŠนํ—ˆ ์ ๊ฒฉ์„ฑ์„ ์ธ์ •ํ•˜๋Š” ์ค‘์š”ํ•œ ๊ธฐ์ค€์ด ๋ฉ๋‹ˆ๋‹ค.

 

๐ŸŒ ์ฃผ์š”๊ตญ ํŠนํ—ˆ์ฒญ๋ณ„ ํ•ต์‹ฌ ์‹ฌ์‚ฌ ๊ธฐ์ค€ ๋น„๊ต

ํ”„๋กฌํ”„ํŠธ ๊ธฐ์ˆ ์˜ ํŠนํ—ˆ ๊ฐ€๋Šฅ์„ฑ์€ ๋ชจ๋“  ๋‚˜๋ผ์—์„œ ๋™์ผํ•˜๊ฒŒ ํ‰๊ฐ€๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๊ตญ์ œ ์ถœ์›์„ ๊ณ ๋ คํ•œ๋‹ค๋ฉด ์ฃผ์š”๊ตญ ํŠนํ—ˆ์ฒญ์˜ ๋ฏธ๋ฌ˜ํ•œ ์‹œ๊ฐ์ฐจ๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

1. USPTO (๋ฏธ๊ตญ ํŠนํ—ˆ์ฒญ) – ์ถ”์ƒ์  ์•„์ด๋””์–ด ์˜ˆ์™ธ ๊ฐ•์กฐ

๋ฏธ๊ตญ ํŠนํ—ˆ์ฒญ์€ ๋Œ€๋ฒ•์› ํŒ๋ก€์—์„œ ๋น„๋กฏ๋œ Alice/Mayo 2๋‹จ๊ณ„ ํ…Œ์ŠคํŠธ๋ฅผ ์—„๊ฒฉํžˆ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ ์ธ๊ฐ„์˜ ์‚ฌ๊ณ  ๊ณผ์ •์„ ๋Œ€์ฒดํ•˜๋Š” ์ง€์‹œ๋‚˜ ์ผ๋ฐ˜์  ์–ธ์–ด ํ‘œํ˜„์€ “์ถ”์ƒ์  ์•„์ด๋””์–ด”๋กœ ๋ณด์•„ ๋ฐฐ์ œ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ”„๋กฌํ”„ํŠธ๊ฐ€ ๊ตฌ์ฒด์ ์ธ ๊ธฐ์ˆ ์  ๊ตฌํ˜„(์˜ˆ: ๋ชจ๋ธ ์ •ํ™•๋„ ๊ฐœ์„ , ํŠน์ • ํ•˜๋“œ์›จ์–ด ์—ฐ์‚ฐ ์ตœ์ ํ™”)์— ์—ฐ๊ฒฐ๋˜์–ด ์žˆ์Œ์„ ์ž…์ฆํ•˜๋ฉด ํŠนํ—ˆ ์ ๊ฒฉ์„ฑ์„ ์ธ์ •๋ฐ›์„ ์—ฌ์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.

2. EPO (์œ ๋Ÿฝ ํŠนํ—ˆ์ฒญ) – ๊ธฐ์ˆ ์  ํšจ๊ณผ(technical effect) ์ค‘์‹ฌ

์œ ๋Ÿฝ ํŠนํ—ˆ์ฒญ์€ ”๊ธฐ์ˆ ์  ์„ฑ๊ฒฉ” ๋ฐ “๊ธฐ์ˆ ์  ํšจ๊ณผ”๋ฅผ ๊ธฐ์ค€์œผ๋กœ ํŒ๋‹จํ•ฉ๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ ๋ฐ์ดํ„ฐ ์ž…๋ ฅ์ด๋‚˜ ์–ธ์–ด ๊ทœ์น™์„ ์ œ์‹œํ•˜๋Š” ์ˆ˜์ค€์€ ๋ฐœ๋ช…์„ฑ์ด ์—†๋‹ค๊ณ  ๋ณด์ง€๋งŒ, ํ”„๋กฌํ”„ํŠธ ๊ตฌ์กฐ๊ฐ€ ๊ธฐ์ˆ ์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์ˆ˜๋‹จ(์˜ˆ: ์—ฐ์‚ฐ ํšจ์œจ ๊ฐœ์„ , ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ ์ตœ์ ํ™”, ํŠน์ • ์žฅ์น˜์™€์˜ ์ƒํ˜ธ์ž‘์šฉ ๊ฐ•ํ™”)์œผ๋กœ ๊ธฐ๋Šฅํ•œ๋‹ค๋ฉด ํŠนํ—ˆ ์ ๊ฒฉ์„ฑ์„ ์ธ์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

3. KIPO (ํ•œ๊ตญ ํŠนํ—ˆ์ฒญ) – ์†Œํ”„ํŠธ์›จ์–ด ๋ฐœ๋ช…์˜ ์‹ค์ฒด์  ์š”๊ฑด ๊ฐ•์กฐ

ํ•œ๊ตญ ํŠนํ—ˆ์ฒญ์€ “์ž์—ฐ๋ฒ•์น™์„ ์ด์šฉํ•œ ๊ธฐ์ˆ ์  ์‚ฌ์ƒ์˜ ์ฐฝ์ž‘”์ด๋ผ๋Š” ์ „ํ†ต์  ์š”๊ฑด์„ ์ค‘์‹œํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‹จ์ˆœํžˆ ๋ฌธ์žฅ์ด๋‚˜ ์–ธ์–ด ๊ทœ์น™์œผ๋กœ์„œ์˜ ํ”„๋กฌํ”„ํŠธ๋Š” ๊ธฐ์ˆ ์  ์‚ฌ์ƒ์ด ์•„๋‹ˆ๋ผ๊ณ  ๋ณด์ง€๋งŒ, ํŠน์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜·ํ•˜๋“œ์›จ์–ด·์‹œ์Šคํ…œ๊ณผ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ตฌ์ฒด์ ์ธ ๊ธฐ์ˆ ์  ๊ฒฐ๊ณผ๋ฅผ ๋„์ถœํ•จ์„ ์ž…์ฆํ•˜๋ฉด ๋ฐœ๋ช…์œผ๋กœ ์ธ์ •๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ํ•œ๊ตญ ์‹ค๋ฌด์—์„œ๋Š” ๊ตฌ์ฒด์  ์‹œ์Šคํ…œ ๊ตฌ์กฐ๋‚˜ ์ฒ˜๋ฆฌ ํ๋ฆ„์„ ํ•จ๊ป˜ ์ œ์‹œํ•ด์•ผ ์„ค๋“๋ ฅ์ด ํฝ๋‹ˆ๋‹ค.

ํ•ต์‹ฌ ๋น„๊ต ์š”์•ฝ

ํŠนํ—ˆ์ฒญ ํ•ต์‹ฌ ์š”๊ฑด
USPTO (๋ฏธ๊ตญ) ์ถ”์ƒ์  ์•„์ด๋””์–ด ์˜ˆ์™ธ๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•œ ‘๊ตฌ์ฒด์  ๊ธฐ์ˆ  ๊ตฌํ˜„’ ๊ฐ•์กฐ
EPO (์œ ๋Ÿฝ) ‘๊ธฐ์ˆ ์  ํšจ๊ณผ(technical effect)’ ์ž…์ฆ์ด ํ•ต์‹ฌ. ๋‹จ์ˆœ ๋ฐ์ดํ„ฐ ์กฐ์ž‘์€ ๋ถˆ๊ฐ€
KIPO (ํ•œ๊ตญ) ์ž์—ฐ๋ฒ•์น™์„ ์ด์šฉํ•œ ๊ธฐ์ˆ ์  ์‚ฌ์ƒ + ์‹œ์Šคํ…œ/๊ตฌ์กฐ์  ๊ตฌํ˜„ ๊ฐ•์กฐ
⚠️ ๊ตญ์ œ์ถœ์› ์‹œ์‚ฌ์ 
๋™์ผํ•œ “LLM ํ”„๋กฌํ”„ํŠธ” ๊ธฐ์ˆ ์ด๋ผ๋„ ๋ฏธ๊ตญ์—์„œ๋Š” “์ถ”์ƒ์  ๋น„์ฆˆ๋‹ˆ์Šค ๋ฐฉ๋ฒ•”์œผ๋กœ, ์œ ๋Ÿฝ์—์„œ๋Š” “๋น„๊ธฐ์ˆ ์  ์–ธ์–ด ๊ทœ์น™”์œผ๋กœ, ํ•œ๊ตญ์—์„œ๋Š” “๋‹จ์ˆœ ์•„์ด๋””์–ด”๋กœ ๋ฐฐ์ œ๋  ์œ„ํ—˜์ด ๊ฐ๊ฐ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ตญ์ œ์ถœ์›์„ ๊ณ ๋ คํ•œ๋‹ค๋ฉด, ๊ณตํ†ต๋ถ„๋ชจ์ธ ‘๊ตฌ์ฒด์ ์ธ ์‹œ์Šคํ…œ ์•„ํ‚คํ…์ฒ˜’์™€ ‘์ธก์ • ๊ฐ€๋Šฅํ•œ ๊ธฐ์ˆ ์  ํšจ๊ณผ’๋ฅผ ๋ช…์„ธ์„œ ์ „๋ฐ˜์— ๋ช…ํ™•ํžˆ ๋“œ๋Ÿฌ๋‚ด๋Š” ์ „๋žต์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค.

 

๐Ÿงฎ ํŠนํ—ˆ ์ฒญ๊ตฌํ•ญ ๊ตฌ์„ฑ ์‹ค๋ฌด ๊ฐ€์ด๋“œ (์ƒ์„ธํŽธ)

๊ทธ๋ ‡๋‹ค๋ฉด ‘์ธ๊ฐ„์˜ ๊ฐœ์ž…’์ด๋ผ๋Š” ๊ณต๊ฒฉ์„ ํ”ผํ•˜๊ณ  ‘๊ธฐ์ˆ ์  ๋ฐœ๋ช…’์ž„์„ ๋ช…ํ™•ํžˆ ํ•˜๋ ค๋ฉด ํŠนํ—ˆ ์ฒญ๊ตฌํ•ญ์„ ์–ด๋–ป๊ฒŒ ์ž‘์„ฑํ•ด์•ผ ํ• ๊นŒ์š”? ํ•ต์‹ฌ ์ „๋žต 4๊ฐ€์ง€๋ฅผ ๋” ๊ตฌ์ฒด์ ์œผ๋กœ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

1. ์ฃผ์–ด๋ฅผ ‘์‚ฌ๋žŒ’์ด ์•„๋‹Œ ‘์ปดํ“จํ„ฐ(ํ”„๋กœ์„ธ์„œ)’๋กœ ์„ค์ •ํ•˜์„ธ์š”.

์ด๋Š” ๋ฐœ๋ช…์˜ ์ค‘์‹ฌ์„ ‘์‚ฌ์šฉ์ž์˜ ์ •์‹  ํ™œ๋™’์—์„œ ‘๊ธฐ๊ณ„์˜ ๊ธฐ์ˆ ์  ๋™์ž‘’์œผ๋กœ ์˜ฎ๊ธฐ๋Š” ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค. ์ฒญ๊ตฌํ•ญ์˜ ๋ชจ๋“  ๋‹จ๊ณ„๊ฐ€ ์ปดํ“จํ„ฐ ํ•˜๋“œ์›จ์–ด(ํ”„๋กœ์„ธ์„œ, ๋ฉ”๋ชจ๋ฆฌ ๋“ฑ)์— ์˜ํ•ด ์ˆ˜ํ–‰๋จ์„ ๋ช…์‹œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

  • Bad ๐Ÿ‘Ž: ์‚ฌ์šฉ์ž๊ฐ€ LLM์— ํŽ˜๋ฅด์†Œ๋‚˜๋ฅผ ์ง€์ •ํ•˜๊ณ  ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•.
  • Good ๐Ÿ‘: ํ”„๋กœ์„ธ์„œ๊ฐ€(A processor), ์‚ฌ์šฉ์ž์˜ ์ž…๋ ฅ์„ ์ˆ˜์‹ ํ•˜์—ฌ ํŠน์ • ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด์˜ ์ „๋ฌธ๊ฐ€ ํŽ˜๋ฅด์†Œ๋‚˜๋ฅผ LLM์— ๋ถ€์—ฌํ•˜๋Š” ๋‹จ๊ณ„.

2. ํ”„๋กฌํ”„ํŠธ๋ฅผ ‘๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ’๋กœ ๊ตฌ์ฒดํ™”ํ•˜์„ธ์š”.

‘์ž์—ฐ์–ด ํ”„๋กฌํ”„ํŠธ’์™€ ๊ฐ™์€ ์ถ”์ƒ์ ์ธ ํ‘œํ˜„ ๋Œ€์‹ , ์ปดํ“จํ„ฐ๊ฐ€ ์ฒ˜๋ฆฌํ•˜๋Š” ๊ตฌ์ฒด์ ์ธ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ์ž„์„ ๋ช…ํ™•ํžˆ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ฐœ๋ช…์ด ๋‹จ์ˆœํ•œ ์•„์ด๋””์–ด๊ฐ€ ์•„๋‹˜์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

  • Bad ๐Ÿ‘Ž: LLM์— ์ž์—ฐ์–ด ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋‹จ๊ณ„.
  • Good ๐Ÿ‘: ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ช…์นญ ๋ฐ ๋ฒ„์ „ ์ œ์•ฝ ์กฐ๊ฑด์„ ํฌํ•จํ•˜๋Š” ๊ธฐ๊ณ„ ํŒ๋… ๊ฐ€๋Šฅํ•œ ์ปจํ…์ŠคํŠธ ์Šคํ‚ค๋งˆ(a machine-readable context schema)๋ฅผ ์ƒ์„ฑํ•˜์—ฌ LLM์— ์ œ๊ณตํ•˜๋Š” ๋‹จ๊ณ„.

3. ๊ฒฐ๊ณผ๋ฌผ์ด ์•„๋‹Œ ‘์‹œ์Šคํ…œ ์„ฑ๋Šฅ ๊ฐœ์„ ’์„ ์ฒญ๊ตฌํ•˜์„ธ์š”.

‘์ข‹์€ ์ฝ”๋“œ’์™€ ๊ฐ™์€ ์ฃผ๊ด€์ ์ธ ๊ฒฐ๊ณผ๋ฌผ์ด ์•„๋‹ˆ๋ผ, ์ปดํ“จํ„ฐ์˜ ๊ธฐ๋Šฅ์„ ์‹ค์งˆ์ ์œผ๋กœ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฐ๊ด€์ ์ด๊ณ  ์ธก์ • ๊ฐ€๋Šฅํ•œ ํšจ๊ณผ๋ฅผ ๋ช…์‹œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ด๊ฒƒ์ด ๋ฐ”๋กœ ‘๊ธฐ์ˆ ์  ํšจ๊ณผ’์˜ ํ•ต์‹ฌ์ž…๋‹ˆ๋‹ค.

  • Bad ๐Ÿ‘Ž: ์ตœ์ ํ™”๋œ ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋‹จ๊ณ„.
  • Good ๐Ÿ‘: ์ƒ๊ธฐ ์Šคํ‚ค๋งˆ๋ฅผ ํ†ตํ•ด LLM์˜ ํ† ํฐ ์ƒ์„ฑ ํ™•๋ฅ ์„ ์ œ์–ดํ•˜์—ฌ, ์ฝ”๋“œ ํ˜ธํ™˜์„ฑ ์˜ค๋ฅ˜๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๊ณ  GPU ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ ˆ๊ฐํ•˜๋Š” ์ตœ์ ํ™”๋œ ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋‹จ๊ณ„.

4. ‘์ž๋™ํ™”’ ๊ณผ์ •์„ ๋ช…ํ™•ํžˆ ํ•˜์„ธ์š”.

์ตœ์ดˆ์˜ ์ž…๋ ฅ์„ ์ œ์™ธํ•œ ๋ชจ๋“  ๊ณผ์ •(๋ฐ์ดํ„ฐ ๊ตฌ์กฐํ™”, LLM ์ œ์–ด, ๊ฒฐ๊ณผ ์ƒ์„ฑ ๋“ฑ)์€ ์ธ๊ฐ„์˜ ์ถ”๊ฐ€์ ์ธ ํŒ๋‹จ ์—†์ด ์‹œ์Šคํ…œ์— ์˜ํ•ด ์ž๋™์œผ๋กœ(Automatically) ์ด๋ฃจ์–ด์ง„๋‹ค๋Š” ์ ์„ ๋ช…์‹œํ•˜์—ฌ, ์žฌํ˜„ ๊ฐ€๋Šฅํ•œ ๊ธฐ์ˆ  ํ”„๋กœ์„ธ์Šค์ž„์„ ๋ณด์—ฌ์ค˜์•ผ ํ•ฉ๋‹ˆ๋‹ค.

 

๐Ÿ“œ ๊ฐ•ํ™”๋œ ์ฒญ๊ตฌํ•ญ ์˜ˆ์‹œ

์•ž์„œ ์„ค๋ช…ํ•œ ์ „๋žต๋“ค์„ ๋ชจ๋‘ ํ†ตํ•ฉํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ฐ•ํ™”๋œ ํŠนํ—ˆ ์ฒญ๊ตฌํ•ญ์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

[์ฒญ๊ตฌํ•ญ] ์ตœ์ ํ™”๋œ ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์ปดํ“จํ„ฐ ๊ตฌํ˜„ ๋ฐฉ๋ฒ•์œผ๋กœ์„œ,

  1. (a) ํ”„๋กœ์„ธ์„œ๊ฐ€ ์‚ฌ์šฉ์ž์˜ ์ž์—ฐ์–ด ์ž…๋ ฅ์„ ํŒŒ์‹ฑํ•˜์—ฌ, ํŠน์ • ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด์˜ ์ „๋ฌธ๊ฐ€ ์—ญํ• ์„ ์ •์˜ํ•˜๋Š” ํŽ˜๋ฅด์†Œ๋‚˜ ์‹๋ณ„์ž๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋‹จ๊ณ„;
  2. (b) ํ”„๋กœ์„ธ์„œ๊ฐ€ ์ƒ๊ธฐ ์ž…๋ ฅ ๋ฐ ์™ธ๋ถ€ ์ฝ”๋“œ ์ €์žฅ์†Œ๋ฅผ ์ฐธ์กฐํ•˜์—ฌ, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๋ช…์นญ๊ณผ ๋ฒ„์ „ ์ œ์•ฝ์กฐ๊ฑด, ํ•˜๋“œ์›จ์–ด ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ ํ•œ๊ณ„์น˜๋ฅผ ํฌํ•จํ•˜๋Š” ๊ตฌ์กฐํ™”๋œ ์ปจํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ(structured context data)๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋‹จ๊ณ„;
  3. (c) ํ”„๋กœ์„ธ์„œ๊ฐ€ ์ƒ๊ธฐ ํŽ˜๋ฅด์†Œ๋‚˜ ์‹๋ณ„์ž ๋ฐ ๊ตฌ์กฐํ™”๋œ ์ปจํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ํฌํ•จํ•˜๋Š” ์ œ์–ด ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ LLM์— ์ „์†กํ•จ์œผ๋กœ์จ, LLM์˜ ๋‚ด๋ถ€ ํ† ํฐ ์ƒ์„ฑ ๊ณผ์ •์„ ์ž๋™์œผ๋กœ ์ œ์–ดํ•˜๋Š” ๋‹จ๊ณ„;
  4. (d) ์ƒ๊ธฐ ์ œ์–ด๋œ LLM์œผ๋กœ๋ถ€ํ„ฐ, ์ƒ๊ธฐ ์ œ์•ฝ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๊ณ  ์ปดํŒŒ์ผ ์˜ค๋ฅ˜์œจ์ด ์‚ฌ์ „ ์ •์˜๋œ ์ž„๊ณ„๊ฐ’ ๋ฏธ๋งŒ์ด๋ฉฐ GPU ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์ด ๊ฐ์†Œ๋œ ์ตœ์ ํ™”๋œ ์ฝ”๋“œ๋ฅผ ์ˆ˜์‹ ํ•˜๋Š” ๋‹จ๊ณ„๋ฅผ ํฌํ•จํ•˜๋Š” ๋ฐฉ๋ฒ•.

→ ์ด ์˜ˆ์‹œ๋Š” ๋‹จ์ˆœํ•œ ๊ฒฐ๊ณผ๋ฌผ์ด ์•„๋‹ˆ๋ผ, ‘์ปดํŒŒ์ผ ์˜ค๋ฅ˜์œจ ๊ฐ์†Œ’, ‘GPU ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๊ฐ์†Œ’์™€ ๊ฐ™์€ ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ์ธก์ • ๊ฐ€๋Šฅํ•œ ๊ธฐ์ˆ ์  ํšจ๊ณผ๋ฅผ ๋ช…ํ™•ํžˆ ํ•จ์œผ๋กœ์จ ํŠนํ—ˆ ๋“ฑ๋ก ๊ฐ€๋Šฅ์„ฑ์„ ํฌ๊ฒŒ ๋†’์ž…๋‹ˆ๋‹ค.

 

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ ❓

Q: “๊ณ ์–‘์ด ์‹œ๋ฅผ ์จ์ค˜” ๊ฐ™์€ ๊ฐ„๋‹จํ•œ ํ”„๋กฌํ”„ํŠธ๋„ ํŠนํ—ˆ๋ฅผ ๋ฐ›์„ ์ˆ˜ ์žˆ๋‚˜์š”?
A: ์•„๋‹ˆ์š”, ๊ทธ ์ž์ฒด๋Š” ์•„์ด๋””์–ด์— ๋ถˆ๊ณผํ•˜์—ฌ ํŠนํ—ˆ๋ฅผ ๋ฐ›๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค. ํŠนํ—ˆ์˜ ๋Œ€์ƒ์€ ์‹œ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ํŠน์ • ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ(์˜ˆ: ์‹œ์  ์žฅ์น˜, ์šด์œจ ๊ตฌ์กฐ๋ฅผ ์ •์˜ํ•œ ์Šคํ‚ค๋งˆ)๋ฅผ ๊ฐ€์ง„ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ LLM์„ ์ œ์–ดํ•˜๊ณ , ๊ทธ ๊ฒฐ๊ณผ ์ปดํ“จํŒ… ์ž์›์„ ๋œ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ํŠน์ • ์Šคํƒ€์ผ์˜ ์‹œ๋ฅผ ๋” ์ •ํ™•ํ•˜๊ฒŒ ์ƒ์„ฑํ•˜๋Š” ๋“ฑ์˜ ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•์ด๋‚˜ ์‹œ์Šคํ…œ์ž…๋‹ˆ๋‹ค.
Q: ํ”„๋กฌํ”„ํŠธ ๊ธฐ์ˆ ์˜ ‘๊ธฐ์ˆ ์  ํšจ๊ณผ’๋Š” ๊ตฌ์ฒด์ ์œผ๋กœ ์–ด๋–ค ๊ฒƒ๋“ค์ด ์žˆ๋‚˜์š”?
A: ๋Œ€ํ‘œ์ ์œผ๋กœ ์ฝ”๋“œ ์ƒ์„ฑ ์‹œ ์ปดํŒŒ์ผ ์˜ค๋ฅ˜์œจ ๊ฐ์†Œ, GPU๋‚˜ ๋ฉ”๋ชจ๋ฆฌ ๊ฐ™์€ ์ปดํ“จํŒ… ๋ฆฌ์†Œ์Šค ์‚ฌ์šฉ๋Ÿ‰ ์ ˆ๊ฐ, ์‘๋‹ต ์ƒ์„ฑ ์‹œ๊ฐ„ ๋‹จ์ถ•, ํŠน์ • ๋ฐ์ดํ„ฐ ํ˜•์‹(JSON, XML ๋“ฑ)์˜ ์ถœ๋ ฅ ์ •ํ™•๋„ ํ–ฅ์ƒ ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ค‘์š”ํ•œ ๊ฒƒ์€ ์ด ํšจ๊ณผ๊ฐ€ ์ธก์ • ๊ฐ€๋Šฅํ•˜๊ณ  ์žฌํ˜„ ๊ฐ€๋Šฅํ•ด์•ผ ํ•œ๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
Q: ๊ตญ์ œ ์ถœ์› ์‹œ ๊ตญ๊ฐ€๋งˆ๋‹ค ์ฒญ๊ตฌํ•ญ์„ ๋‹ค๋ฅด๊ฒŒ ์ž‘์„ฑํ•ด์•ผ ํ•˜๋‚˜์š”?
A: ๋„ค, ํ•ต์‹ฌ ์ „๋žต์€ ๊ฐ™์ง€๋งŒ ๊ฐ ํŠนํ—ˆ์ฒญ์ด ์ค‘์‹œํ•˜๋Š” ํฌ์ธํŠธ์— ๋งž์ถฐ ๊ฐ•์กฐ์ ์„ ๋‹ฌ๋ฆฌํ•˜๋Š” ๊ฒƒ์ด ์œ ๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋ฏธ๊ตญ(USPTO) ๋ช…์„ธ์„œ์—๋Š” ‘์ปดํ“จํ„ฐ ๊ธฐ๋Šฅ์˜ ๊ตฌ์ฒด์  ๊ฐœ์„ ’์„, ์œ ๋Ÿฝ(EPO)์—๋Š” ‘๊ธฐ์ˆ ์  ๋ฌธ์ œ ํ•ด๊ฒฐ์„ ํ†ตํ•œ ๊ธฐ์ˆ ์  ํšจ๊ณผ’๋ฅผ, ํ•œ๊ตญ(KIPO)์—๋Š” ‘์‹œ์Šคํ…œ ๊ตฌ์„ฑ๊ณผ ์ฒ˜๋ฆฌ ํ๋ฆ„์˜ ๊ตฌ์ฒด์„ฑ’์„ ๋” ๋ถ€๊ฐ์‹œํ‚ค๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.

๊ฒฐ๋ก ์ ์œผ๋กœ, AI ํ”„๋กฌํ”„ํŠธ๋ฅผ ํŠนํ—ˆ๋กœ ๋ณดํ˜ธ๋ฐ›๋Š” ๊ธธ์€ ๋ถ„๋ช…ํžˆ ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋‹ค๋งŒ, ‘๋ฌด์—‡์„ ์š”์ฒญํ•˜๋Š”๊ฐ€’๋ผ๋Š” ์•„์ด๋””์–ด์˜ ์ฐจ์›์„ ๋„˜์–ด, ‘์–ด๋–ป๊ฒŒ ์ปดํ“จํ„ฐ ์‹œ์Šคํ…œ์„ ๊ธฐ์ˆ ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ณ  ๊ฐœ์„ ํ•˜๋Š”๊ฐ€’๋ฅผ ๋ช…ํ™•ํžˆ ๋ณด์—ฌ์ฃผ๋Š” ์ „๋žต์  ์ ‘๊ทผ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ธ€์ด ์—ฌ๋Ÿฌ๋ถ„์˜ ํ˜์‹ ์ ์ธ ์•„์ด๋””์–ด๋ฅผ ๊ฐ•๋ ฅํ•œ ์ง€์‹์žฌ์‚ฐ์œผ๋กœ ๋งŒ๋“œ๋Š” ๋ฐ ์ž‘์€ ์‹ค๋งˆ๋ฆฌ๊ฐ€ ๋˜์—ˆ์œผ๋ฉด ํ•ฉ๋‹ˆ๋‹ค. ๋” ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด ๋Œ“๊ธ€๋กœ ๋ฌผ์–ด๋ด ์ฃผ์„ธ์š”~ ๐Ÿ˜Š

Wednesday, September 3, 2025

LLM-Powered Patent Search from A to Z: From Basic Prompts to Advanced Strategy

 

Still Stumped by Patent Searches with LLMs? This post breaks down how to use the latest AI Large Language Models (LLMs) to maximize the accuracy and efficiency of your patent searches, including specific model selection methods and advanced ‘deep research’ prompting techniques.

Hi there! Have you ever spent days, or even weeks, lost in a sea of patent documents, trying to find that one piece of information you need? I’ve definitely been there. The anxiety of wondering, ‘Is my idea truly novel?’ can keep you up at night. But thanks to the latest Large Language Models (LLMs), the whole paradigm of patent searching is changing. It’s even possible for an AI to conduct its own ‘deep research’ by diving into multiple sources. Today, I’m going to share some practical examples of ‘prompt engineering’ that I’ve learned firsthand to help you unlock 200% of your LLM’s potential!

Prompt Engineering Tricks to Boost Accuracy by 200%

Choosing the right AI model is important, but the success of your patent search ultimately depends on how you ask your questions. That’s where ‘prompt engineering’ comes in. It’s the key to making the AI accurately grasp your intent and deliver the best possible results. Let’s dive into some real-world examples.

Heads Up!
LLMs are not perfect. They can sometimes confidently present false information, a phenomenon known as ‘hallucination.’ It’s crucial to get into the habit of cross-referencing any patent numbers or critical details the AI provides with an official database.

 

1. Using Chain-of-Thought for Step-by-Step Reasoning

When you have a complex analysis task, asking the AI to ‘show its work’ by thinking step-by-step can reduce logical errors and improve accuracy.

Prompt Example:
Analyze the validity of a patent for an ‘autonomous driving technology that fuses camera and LiDAR sensor data’ by following these steps.

Step 1: Define the core technical components (camera, LiDAR, data fusion).
Step 2: Based on the defined components, generate 5 sets of search keywords for the USPTO database.
Step 3: From the search results, select the 3 most similar prior art patents.
Step 4: Compare the key claims of the selected patents with our technology, and provide your final opinion on the patentability of our tech.

 

2. Using Real-Time External Information (RAG & ReAct)

LLMs only know information up to their last training date. To get the latest patent data, you need to instruct them to search external databases in real-time.

Prompt Example:
You are a patent analyst. Using your search tool, find all patent publications on KIPRIS related to ‘Quantum Dot Displays’ published since January 1, 2024.

1. Organize the list of patents by application number, title of invention, and applicant.
2. Summarize the overall technology trends and analyze the core technical focus of the top 3 applicants.
3. Based on your analysis, predict which technologies in this field are likely to be promising over the next two years.

 

3. Activating the “Deep Research” Function

The latest LLMs can do more than just a single search. They have ‘deep research’ capabilities that can synthesize information from multiple websites, academic papers, and technical documents to create a comprehensive report, much like a human researcher.

Prompt Example:
Activate your deep research function. Write an in-depth report on the global R&D trends for ‘next-generation semiconductor materials using Graphene.’ The report must include the following:

1. The main challenges of the current technology and the latest research trends aimed at solving them (reference and summarize at least 3 reputable academic papers or tech articles).
2. An analysis of the top 5 companies and research institutions leading this field and their key patent portfolios.
3. The expected technology development roadmap and market outlook for the next 5 years.
4. Clearly cite the source (URL) for all information referenced in the report.

 

4. Exploring Multiple Paths (Tree of Thoughts)

This is useful for solving strategic problems with no single right answer, like designing around a patent or charting a new R&D direction. You have the AI explore and evaluate multiple possible scenarios.

Prompt Example:
Propose three new design concepts for a ‘secondary battery electrode structure’ that do not infringe on claim 1 of U.S. Patent ‘US 1234567 B2’.

1. For each design, clearly explain which elements of the original patent were changed and how.
2. Evaluate the technical advantages, expected performance, and potential drawbacks of each design.
3. Select the design you believe has the highest likelihood of avoiding infringement and achieving commercial success, and provide a detailed argument for your choice.

๐Ÿ’ก Pro Tip!
The common thread in all great prompts is that they give the AI a clear ‘role,’ explain the ‘context,’ and demand a ‘specific output format.’ Just remembering these three things will dramatically improve your results.
๐Ÿ’ก

LLM Patent Search: Key Takeaways

Assign a Role: Give the AI a specific expert role, like “You are a patent attorney.”
Step-by-Step Thinking: For complex analyses, instruct the AI to use step-by-step reasoning (CoT) to improve logical accuracy.
Advanced Strategies:
Use Deep Research and Tree of Thoughts to generate expert-level reports.
Cross-Verification is a Must: Always be aware of AI hallucinations and verify important information against original sources.

Frequently Asked Questions

Q: Is the ‘deep research’ function available on all LLMs?
A: No, not yet. It’s more of an advanced feature typically found in the latest premium versions of LLMs like Perplexity, Gemini, and ChatGPT. However, you can mimic a similar effect by using the standard search function and asking questions in multiple, sequential steps.
Q: Can I trust the search results from an LLM 100%?
A: No, you absolutely cannot. An LLM is a powerful assistant, not a substitute for a qualified expert’s final judgment. Due to hallucinations, it can invent patent numbers or misrepresent content. It is essential to always verify its findings against the original documents and have them reviewed by a professional.
Q: Prompt engineering seems complicated. Where should I start?
A: An easy way to start is by modifying the examples shown today. Just applying three techniques—’assigning a role,’ ‘specifying the format,’ and ‘requesting step-by-step thinking’—will dramatically improve the quality of your results.

Patent searching is no longer the tedious, uphill battle it once was. How you wield the powerful tool of LLMs can change the speed of your R&D and business. I hope you’ll use the tips I’ve shared today to create smarter innovations with AI. If you have any more questions, feel free to ask in the comments!

์ดˆ๋ณด์ž๋ฅผ ์œ„ํ•œ LLM ๊ธฐ๋ฐ˜ ํŠนํ—ˆ ๊ฒ€์ƒ‰ A to Z: ๊ธฐ๋ณธ ๊ธฐ๋ฒ•๋ถ€ํ„ฐ ๋”ฅ๋ฆฌ์„œ์น˜๊นŒ์ง€

 

LLM์œผ๋กœ ํŠนํ—ˆ ๊ฒ€์ƒ‰, ์•„์ง๋„ ๋ง‰๋ง‰ํ•˜์‹ ๊ฐ€์š”? ์ด ๊ธ€์—์„œ๋Š” ์ตœ์‹  AI ์–ธ์–ด ๋ชจ๋ธ(LLM)์„ ํ™œ์šฉํ•ด ํŠนํ—ˆ ๊ฒ€์ƒ‰์˜ ์ •ํ™•๋„์™€ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๊ตฌ์ฒด์ ์ธ ๋ชจ๋ธ ์„ ํƒ๋ฒ•๊ณผ ‘๋”ฅ๋ฆฌ์„œ์น˜’๋ฅผ ํฌํ•จํ•œ ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๋น„๋ฒ•์„ ์ด์ •๋ฆฌํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

์•ˆ๋…•ํ•˜์„ธ์š”! ํ˜น์‹œ ๋ฐฉ๋Œ€ํ•œ ํŠนํ—ˆ ๋ฌธํ—Œ ์†์—์„œ ์›ํ•˜๋Š” ์ •๋ณด๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด ๋ช‡ ๋‚  ๋ฉฐ์น ์„ ํ—ค๋งค๋ณธ ๊ฒฝํ—˜, ๋‹ค๋“ค ํ•œ ๋ฒˆ์ฏค์€ ์žˆ์œผ์‹œ์ฃ ? ‘๋‚ด ์•„์ด๋””์–ด๊ฐ€ ์ •๋ง ์ƒˆ๋กœ์šด ๊ฒŒ ๋งž์„๊นŒ?’ ํ•˜๋Š” ๋ถˆ์•ˆ๊ฐ์— ๋ฐค์ž  ์„ค์น˜๋Š” ์ผ๋„ ๋งŽ์•˜๊ณ ์š”. ํ•˜์ง€๋งŒ ์ตœ์‹  ๊ฑฐ๋Œ€ ์–ธ์–ด ๋ชจ๋ธ(LLM) ๋•๋ถ„์— ์ด์ œ ํŠนํ—ˆ ๊ฒ€์ƒ‰์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์ด ๋ฐ”๋€Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์‹ฌ์ง€์–ด AI๊ฐ€ ์Šค์Šค๋กœ ์—ฌ๋Ÿฌ ์ž๋ฃŒ๋ฅผ ๊นŠ์ด ์žˆ๊ฒŒ ์กฐ์‚ฌํ•˜๋Š” ‘๋”ฅ๋ฆฌ์„œ์น˜’๊นŒ์ง€ ๊ฐ€๋Šฅํ•ด์กŒ์ฃ . ์˜ค๋Š˜์€ ์ œ๊ฐ€ ์ง์ ‘ ํ„ฐ๋“ํ•œ, LLM์˜ ์ž ์žฌ๋ ฅ์„ 200% ๋Œ์–ด๋‚ด๋Š” ‘ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง’ ์‹ค์ „ ์˜ˆ์‹œ๋“ค์„ ์ง‘์ค‘์ ์œผ๋กœ ๋ณด์—ฌ๋“œ๋ฆด๊ฒŒ์š”!

์ •ํ™•๋„ 200% ์˜ฌ๋ฆฌ๋Š” ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง ๋น„๋ฒ•

์ข‹์€ AI ๋ชจ๋ธ์„ ๊ณ ๋ฅด๋Š” ๊ฒƒ๋„ ์ค‘์š”ํ•˜์ง€๋งŒ, ํŠนํ—ˆ ๊ฒ€์ƒ‰์˜ ์„ฑํŒจ๋Š” ๊ฒฐ๊ตญ AI์—๊ฒŒ ‘์–ด๋–ป๊ฒŒ ์งˆ๋ฌธํ•˜๋Š”์ง€’์— ๋‹ฌ๋ ค์žˆ์Šต๋‹ˆ๋‹ค. ๋ฐ”๋กœ ‘ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง’์ด์ฃ . AI๊ฐ€ ์—ฌ๋Ÿฌ๋ถ„์˜ ์˜๋„๋ฅผ ์ •ํ™•ํžˆ ํŒŒ์•…ํ•˜๊ณ  ์ตœ๊ณ ์˜ ๊ฒฐ๊ณผ๋ฌผ์„ ๋‚ด๋†“๊ฒŒ ๋งŒ๋“œ๋Š” ํ•ต์‹ฌ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ง€๊ธˆ๋ถ€ํ„ฐ ์‹ค์ „ ์˜ˆ์‹œ์™€ ํ•จ๊ป˜ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.

์ฃผ์˜ํ•˜์„ธ์š”!
LLM์€ ์™„๋ฒฝํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋•Œ๋•Œ๋กœ ์‚ฌ์‹ค์ด ์•„๋‹Œ ์ •๋ณด๋ฅผ ๊ทธ๋Ÿด๋“ฏํ•˜๊ฒŒ ๋งŒ๋“ค์–ด๋‚ด๋Š” ‘ํ™˜๊ฐ(Hallucination)’ ํ˜„์ƒ์„ ๋ณด์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ AI๊ฐ€ ์ œ์‹œํ•œ ํŠนํ—ˆ ๋ฒˆํ˜ธ๋‚˜ ๋‚ด์šฉ์€ ๋ฐ˜๋“œ์‹œ ์›๋ฌธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ๊ต์ฐจ ํ™•์ธํ•˜๋Š” ์Šต๊ด€์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

 

1. ๋‹จ๊ณ„๋ณ„ ์ถ”๋ก (Chain-of-Thought) ํ™œ์šฉ ์˜ˆ์‹œ

๋ณต์žกํ•œ ๋ถ„์„์„ ์š”์ฒญํ•  ๋•Œ, AI์—๊ฒŒ ์ƒ๊ฐ์˜ ๊ณผ์ •์„ ๋‹จ๊ณ„๋ณ„๋กœ ๋ณด์—ฌ๋‹ฌ๋ผ๊ณ  ์š”์ฒญํ•˜๋ฉด ๋…ผ๋ฆฌ์  ์˜ค๋ฅ˜๋ฅผ ์ค„์ด๊ณ  ์ •ํ™•๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ”„๋กฌํ”„ํŠธ ์˜ˆ์‹œ:
‘์นด๋ฉ”๋ผ์™€ ๋ผ์ด๋‹ค ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์œตํ•ฉํ•˜๋Š” ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ ’์— ๋Œ€ํ•œ ํŠนํ—ˆ ์œ ํšจ์„ฑ์„ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„์„ํ•ด์ค˜.

1๋‹จ๊ณ„: ํ•ต์‹ฌ ๊ธฐ์ˆ  ๊ตฌ์„ฑ์š”์†Œ(์นด๋ฉ”๋ผ, ๋ผ์ด๋‹ค, ๋ฐ์ดํ„ฐ ์œตํ•ฉ)๋ฅผ ์ •์˜ํ•ด์ค˜.
2๋‹จ๊ณ„: ์ •์˜๋œ ๊ตฌ์„ฑ์š”์†Œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ USPTO ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์‚ฌ์šฉํ•  ๊ฒ€์ƒ‰ ํ‚ค์›Œ๋“œ ์กฐํ•ฉ 5๊ฐœ๋ฅผ ์ƒ์„ฑํ•ด์ค˜.
3๋‹จ๊ณ„: ์ƒ์„ฑ๋œ ํ‚ค์›Œ๋“œ๋กœ ๊ฒ€์ƒ‰๋œ ์„ ํ–‰ ๊ธฐ์ˆ  ์ค‘ ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ํŠนํ—ˆ 3๊ฐœ๋ฅผ ์„ ์ •ํ•ด์ค˜.
4๋‹จ๊ณ„: ์„ ์ •๋œ ํŠนํ—ˆ๋“ค์˜ ํ•ต์‹ฌ ์ฒญ๊ตฌํ•ญ๊ณผ ์šฐ๋ฆฌ ๊ธฐ์ˆ ์˜ ์ฐจ์ด์ ์„ ๋น„๊ต ๋ถ„์„ํ•˜๊ณ , ์ตœ์ข…์ ์œผ๋กœ ์šฐ๋ฆฌ ๊ธฐ์ˆ ์˜ ํŠนํ—ˆ ๋“ฑ๋ก ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•œ ๋„ˆ์˜ ์˜๊ฒฌ์„ ์ œ์‹œํ•ด์ค˜.

 

2. ์™ธ๋ถ€ ์ •๋ณด ์‹ค์‹œ๊ฐ„ ํ™œ์šฉ(RAG & ReAct) ์˜ˆ์‹œ

LLM์€ ํ•™์Šต๋œ ์‹œ์ ๊นŒ์ง€์˜ ์ •๋ณด๋งŒ ์•Œ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ตœ์‹  ํŠนํ—ˆ ์ •๋ณด๋ฅผ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฒ€์ƒ‰ํ•˜๋„๋ก ์ง€์‹œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

ํ”„๋กฌํ”„ํŠธ ์˜ˆ์‹œ:
๋„ˆ๋Š” ํŠนํ—ˆ ๋ถ„์„ ์ „๋ฌธ๊ฐ€์•ผ. ๋„ˆ์˜ ๊ฒ€์ƒ‰ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•ด์„œ 2024๋…„ 1์›” 1์ผ ์ดํ›„ KIPRIS์— ๊ณต๊ฐœ๋œ ‘์–‘์ž์ (Quantum Dot) ๋””์Šคํ”Œ๋ ˆ์ด’ ๊ด€๋ จ ํŠนํ—ˆ ๊ณต๋ณด๋ฅผ ๋ชจ๋‘ ์ฐพ์•„์ค˜.

1. ๊ฒ€์ƒ‰๋œ ํŠนํ—ˆ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ถœ์›๋ฒˆํ˜ธ, ๋ฐœ๋ช…์˜ ๋ช…์นญ, ์ถœ์›์ธ ์ˆœ์œผ๋กœ ์ •๋ฆฌํ•ด์ค˜.
2. ์ „์ฒด ๊ธฐ์ˆ  ํŠธ๋ Œ๋“œ๋ฅผ ์š”์•ฝํ•˜๊ณ , ๊ฐ€์žฅ ๋งŽ์ด ์ถœ์›ํ•œ ์ƒ์œ„ 3๊ฐœ ๊ธฐ์—…์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ  ๋ฐฉํ–ฅ์„ ๋ถ„์„ํ•ด์ค˜.
3. ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ–ฅํ›„ 2๋…„๊ฐ„ ์ด ๋ถ„์•ผ์—์„œ ์œ ๋งํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๋Š” ๊ธฐ์ˆ ์„ ์˜ˆ์ธกํ•ด์ค˜.

 

3. ๋”ฅ๋ฆฌ์„œ์น˜(Deep Research) ๊ธฐ๋Šฅ ํ™œ์„ฑํ™” ์˜ˆ์‹œ

์ตœ์‹  LLM๋“ค์€ ๋‹จ์ˆœํžˆ ํ•œ๋‘ ๊ฐœ์˜ ๋ฌธ์„œ๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, ์—ฌ๋Ÿฌ ์›น์‚ฌ์ดํŠธ์™€ ๋…ผ๋ฌธ, ๊ธฐ์ˆ  ๋ฌธ์„œ๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ํ•˜๋‚˜์˜ ์™„์„ฑ๋œ ๋ณด๊ณ ์„œ๋ฅผ ๋งŒ๋“œ๋Š” ‘๋”ฅ๋ฆฌ์„œ์น˜’ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ธฐ๋Šฅ์„ ํ™œ์„ฑํ™”ํ•˜๋ฉด ์‚ฌ๋žŒ์ด ์ง์ ‘ ๋ฆฌ์„œ์น˜๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ๊ณผ ์œ ์‚ฌํ•œ ์ˆ˜์ค€์˜ ์‹ฌ๋„ ์žˆ๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ”„๋กฌํ”„ํŠธ ์˜ˆ์‹œ:
๋„ˆ์˜ ๋”ฅ๋ฆฌ์„œ์น˜ ๊ธฐ๋Šฅ์„ ํ™œ์„ฑํ™”ํ•ด์ค˜. ‘๊ทธ๋ž˜ํ•€(Graphene)์„ ์ด์šฉํ•œ ์ฐจ์„ธ๋Œ€ ๋ฐ˜๋„์ฒด ์†Œ์žฌ’์˜ ๊ธ€๋กœ๋ฒŒ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ ๋™ํ–ฅ์— ๋Œ€ํ•œ ์‹ฌ์ธต ๋ณด๊ณ ์„œ๋ฅผ ์ž‘์„ฑํ•ด์ค˜. ๋ณด๊ณ ์„œ์—๋Š” ๋‹ค์Œ ๋‚ด์šฉ์ด ๋ฐ˜๋“œ์‹œ ํฌํ•จ๋˜์–ด์•ผ ํ•ด:

1. ํ˜„์žฌ ๊ธฐ์ˆ ์˜ ์ฃผ์š” ๋‚œ์ œ์™€ ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๋ ค๋Š” ์ตœ์‹  ์—ฐ๊ตฌ ๋™ํ–ฅ (๊ณต์‹ ๋ ฅ ์žˆ๋Š” ํ•™์ˆ  ๋…ผ๋ฌธ ๋ฐ ๊ธฐ์ˆ  ๊ธฐ์‚ฌ 3๊ฐœ ์ด์ƒ ์ฐธ์กฐ ๋ฐ ์š”์•ฝ).
2. ์ด ๊ธฐ์ˆ  ๋ถ„์•ผ๋ฅผ ์„ ๋„ํ•˜๋Š” TOP 5 ๊ธฐ์—… ๋ฐ ์—ฐ๊ตฌ ๊ธฐ๊ด€๊ณผ ๊ทธ๋“ค์˜ ํ•ต์‹ฌ ํŠนํ—ˆ ํฌํŠธํด๋ฆฌ์˜ค ๋ถ„์„.
3. ํ–ฅํ›„ 5๋…„๊ฐ„ ์˜ˆ์ƒ๋˜๋Š” ๊ธฐ์ˆ  ๋ฐœ์ „ ๋กœ๋“œ๋งต๊ณผ ์‹œ์žฅ ์ „๋ง.
4. ๋ณด๊ณ ์„œ์— ์ธ์šฉ๋œ ๋ชจ๋“  ์ •๋ณด์˜ ์ถœ์ฒ˜(URL)๋ฅผ ๋ช…ํ™•ํžˆ ๋ฐํ˜€์ค˜.

 

4. ๋‹ค์ค‘ ๊ฒฝ๋กœ ํƒ์ƒ‰(Tree of Thoughts) ํ™œ์šฉ ์˜ˆ์‹œ

ํŠนํ—ˆ ์นจํ•ด๋ฅผ ํšŒํ”ผํ•˜๋Š” ์„ค๊ณ„์•ˆ์ด๋‚˜ ์ƒˆ๋กœ์šด ์—ฐ๊ตฌ๊ฐœ๋ฐœ ๋ฐฉํ–ฅ์ฒ˜๋Ÿผ ์ •๋‹ต์ด ์—†๋Š” ์ „๋žต์  ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๋•Œ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. AI์—๊ฒŒ ์—ฌ๋Ÿฌ ๊ฐ€๋Šฅํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ํƒ์ƒ‰ํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๊ฒŒ ๋งŒ๋“ญ๋‹ˆ๋‹ค.

ํ”„๋กฌํ”„ํŠธ ์˜ˆ์‹œ:
๋ฏธ๊ตญ ํŠนํ—ˆ ‘US 1234567 B2’์˜ ๋…๋ฆฝํ•ญ 1ํ•ญ์„ ์นจํ•ดํ•˜์ง€ ์•Š๋Š” ์ƒˆ๋กœ์šด ‘2์ฐจ ์ „์ง€ ์ „๊ทน ๊ตฌ์กฐ’ ์„ค๊ณ„์•ˆ์„ 3๊ฐ€์ง€ ์ œ์•ˆํ•ด์ค˜.

1. ๊ฐ ์„ค๊ณ„์•ˆ์— ๋Œ€ํ•ด, ์›๋ณธ ํŠนํ—ˆ์˜ ์–ด๋–ค ๊ตฌ์„ฑ์š”์†Œ๋ฅผ ์–ด๋–ป๊ฒŒ ๋ณ€๊ฒฝํ–ˆ๋Š”์ง€ ๋ช…ํ™•ํžˆ ์„ค๋ช…ํ•ด์ค˜.
2. ๊ฐ ์„ค๊ณ„์•ˆ์˜ ๊ธฐ์ˆ ์  ์žฅ์ , ์˜ˆ์ƒ๋˜๋Š” ์„ฑ๋Šฅ, ๊ทธ๋ฆฌ๊ณ  ์ž ์žฌ์  ๋‹จ์ ์„ ํ‰๊ฐ€ํ•ด์ค˜.
3. 3๊ฐ€์ง€ ์„ค๊ณ„์•ˆ ์ค‘ ํŠนํ—ˆ ํšŒํ”ผ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ƒ์—…์  ์„ฑ๊ณต ๊ฐ€๋Šฅ์„ฑ์ด ๊ฐ€์žฅ ๋†’๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋Š” ์•ˆ์„ ํ•˜๋‚˜ ์„ ํƒํ•˜๊ณ , ๊ทธ ์ด์œ ๋ฅผ ์ƒ์„ธํžˆ ๋…ผ์ฆํ•ด์ค˜.

๐Ÿ’ก ์•Œ์•„๋‘์„ธ์š”!
์ข‹์€ ํ”„๋กฌํ”„ํŠธ์˜ ๊ณตํ†ต์ ์€ AI์—๊ฒŒ ๋ช…ํ™•ํ•œ ‘์—ญํ• ’์„ ๋ถ€์—ฌํ•˜๊ณ , ‘๋ฐฐ๊ฒฝ ์ƒํ™ฉ’์„ ์„ค๋ช…ํ•˜๋ฉฐ, ‘๊ตฌ์ฒด์ ์ธ ์‚ฐ์ถœ๋ฌผ ํ˜•ํƒœ’๋ฅผ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ์„ธ ๊ฐ€์ง€๋งŒ ๊ธฐ์–ตํ•ด๋„ LLM์˜ ํ™œ์šฉ๋„๊ฐ€ ๊ทน์ ์œผ๋กœ ๋†’์•„์ง‘๋‹ˆ๋‹ค.
๐Ÿ’ก

LLM ํŠนํ—ˆ ๊ฒ€์ƒ‰ ํ•ต์‹ฌ ์š”์•ฝ

์—ญํ•  ๋ถ€์—ฌ: “๋„ˆ๋Š” ๋ณ€๋ฆฌ์‚ฌ์•ผ”์™€ ๊ฐ™์ด AI์—๊ฒŒ ๊ตฌ์ฒด์ ์ธ ์ „๋ฌธ๊ฐ€ ์—ญํ• ์„ ๋ถ€์—ฌํ•˜์„ธ์š”.
๋‹จ๊ณ„๋ณ„ ์‚ฌ๊ณ : ๋ณต์žกํ•œ ๋ถ„์„์€ AI์—๊ฒŒ ๋‹จ๊ณ„๋ณ„ ์ถ”๋ก (CoT)์„ ์ง€์‹œํ•˜์—ฌ ๋…ผ๋ฆฌ์  ์ •ํ™•๋„๋ฅผ ๋†’์ด์„ธ์š”.
๊ณ ๊ธ‰ ์ „๋žต ํ™œ์šฉ:
๋”ฅ๋ฆฌ์„œ์น˜์™€ ๋‹ค์ค‘๊ฒฝ๋กœ ํƒ์ƒ‰์œผ๋กœ ์ „๋ฌธ๊ฐ€ ์ˆ˜์ค€์˜ ๋ถ„์„ ๋ณด๊ณ ์„œ๋ฅผ ๋งŒ๋“œ์„ธ์š”.
๊ต์ฐจ ๊ฒ€์ฆ ํ•„์ˆ˜: AI์˜ ํ™˜๊ฐ ๊ฐ€๋Šฅ์„ฑ์„ ํ•ญ์ƒ ์ธ์ง€ํ•˜๊ณ , ์ค‘์š”ํ•œ ์ •๋ณด๋Š” ๋ฐ˜๋“œ์‹œ ์›๋ฌธ์œผ๋กœ ํ™•์ธํ•˜์„ธ์š”.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

Q: ‘๋”ฅ๋ฆฌ์„œ์น˜’ ๊ธฐ๋Šฅ์€ ๋ชจ๋“  LLM์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‚˜์š”?
A: ์•„๋‹ˆ์š”, ์•„์ง์€ ๋ชจ๋“  ๋ชจ๋ธ์—์„œ ์ง€์›ํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค. ์ฃผ๋กœ Perplexity, Gemini, ChatGPT ๋“ฑ ์ตœ์‹  ์œ ๋ฃŒ ๋ฒ„์ „์˜ LLM์—์„œ ์ œ๊ณตํ•˜๋Š” ๊ณ ๊ธ‰ ๊ธฐ๋Šฅ์— ๊ฐ€๊น์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ผ๋ฐ˜ ๊ฒ€์ƒ‰ ๊ธฐ๋Šฅ์„ ํ™œ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ๋‹จ๊ณ„์— ๊ฑธ์ณ ์งˆ๋ฌธํ•จ์œผ๋กœ์จ ์œ ์‚ฌํ•œ ํšจ๊ณผ๋ฅผ ๋‚ผ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค.
Q: LLM์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ 100% ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋‚˜์š”?
A: ์•„๋‹ˆ์š”, ์ ˆ๋Œ€ ์•ˆ ๋ฉ๋‹ˆ๋‹ค. LLM์€ ๊ฐ•๋ ฅํ•œ ‘๋ณด์กฐ’ ๋„๊ตฌ์ด์ง€, ์ตœ์ข… ํŒ๋‹จ์„ ๋‚ด๋ฆฌ๋Š” ์ „๋ฌธ๊ฐ€๋ฅผ ๋Œ€์ฒดํ•  ์ˆ˜๋Š” ์—†์Šต๋‹ˆ๋‹ค. ํŠนํžˆ ํ™˜๊ฐ ํ˜„์ƒ์œผ๋กœ ์ธํ•ด ์—†๋Š” ํŠนํ—ˆ ๋ฒˆํ˜ธ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๊ฑฐ๋‚˜ ๋‚ด์šฉ์„ ์™œ๊ณกํ•  ์ˆ˜ ์žˆ์œผ๋‹ˆ, ํ•ญ์ƒ ์›๋ฌธ์„ ํ™•์ธํ•˜๊ณ  ์ „๋ฌธ๊ฐ€์˜ ๊ฒ€ํ† ๋ฅผ ๊ฑฐ์น˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ž…๋‹ˆ๋‹ค.
Q: ํ”„๋กฌํ”„ํŠธ ์—”์ง€๋‹ˆ์–ด๋ง, ๋ญ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•ด์•ผ ํ• ๊นŒ์š”?
A: ๊ฐ€์žฅ ์‰ฌ์šด ์‹œ์ž‘์€ ์˜ค๋Š˜ ๋ณด์—ฌ๋“œ๋ฆฐ ์˜ˆ์‹œ๋“ค์„ ์กฐ๊ธˆ์”ฉ ๋ฐ”๊ฟ”๋ณด๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ‘์—ญํ•  ๋ถ€์—ฌ’, ‘๊ตฌ์ฒด์ ์ธ ํ˜•์‹ ์ง€์ •’, ‘๋‹จ๊ณ„๋ณ„ ์‚ฌ๊ณ  ์š”์ฒญ’ ์ด ์„ธ ๊ฐ€์ง€๋งŒ ์‘์šฉํ•ด๋„ ๊ฒฐ๊ณผ๋ฌผ์˜ ์งˆ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ์ฒด๊ฐํ•˜์‹ค ์ˆ˜ ์žˆ์„ ๊ฑฐ์˜ˆ์š”.

ํŠนํ—ˆ ๊ฒ€์ƒ‰์€ ์ด์ œ ๋” ์ด์ƒ ์ง€๋ฃจํ•˜๊ณ  ํž˜๋“  ์‹ธ์›€์ด ์•„๋‹™๋‹ˆ๋‹ค. LLM์ด๋ผ๋Š” ๊ฐ•๋ ฅํ•œ ๋ฌด๊ธฐ๋ฅผ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋А๋ƒ์— ๋”ฐ๋ผ ์—ฌ๋Ÿฌ๋ถ„์˜ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ๊ณผ ๋น„์ฆˆ๋‹ˆ์Šค์˜ ์†๋„๊ฐ€ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ค๋Š˜ ์•Œ๋ ค๋“œ๋ฆฐ ํŒ๋“ค์„ ๊ผญ ํ™œ์šฉํ•ด ๋ณด์‹œ๊ณ , AI์™€ ํ•จ๊ป˜ ๋” ์Šค๋งˆํŠธํ•œ ํ˜์‹ ์„ ๋งŒ๋“ค์–ด๊ฐ€์‹œ๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๋” ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด ์–ธ์ œ๋“ ์ง€ ๋Œ“๊ธ€๋กœ ๋ฌผ์–ด๋ด์ฃผ์„ธ์š”!

Tuesday, September 2, 2025

๋ฏธ๊ตญ, ์œ ๋Ÿฝ, ์ผ๋ณธ, ํ•œ๊ตญ ํŠนํ—ˆ ๊ฒฝ๊ณ ์žฅ์„ ๋ฐ”๋ผ๋ณด๋Š” ์„œ๋กœ ๋‹ค๋ฅธ ์‹œ๊ฐ๋“ค... Different Perspectives on Patent Warning Letters in the US, Europe, Japan, and Korea...

๊ตญ๊ฐ€๋ณ„๋กœ ์ƒ์ดํ•œ ํŠนํ—ˆ ๊ฒฝ๊ณ ์žฅ ๊ทœ์ œ, ๊ถŒ๋ฆฌ์ž์™€ ์ˆ˜์‹ ์ž ๋ชจ๋‘๋ฅผ ์œ„ํ•œ ํ•„์Šน ์ „๋žต ๊ฐ€์ด๋“œ
Navigating Different Patent Warning Letter Regulations by Country: A Winning Strategy Guide for Both Rights Holders and Recipients

ํŠนํ—ˆ ์นจํ•ด ๊ฒฝ๊ณ , ๊ตญ๊ฐ€๋ณ„๋กœ ๋Œ€์‘๋ฒ•์ด ๋‹ค๋ฅด๋‹ค๋Š” ์‚ฌ์‹ค์„ ์•Œ๊ณ  ๊ณ„์…จ๋‚˜์š”?
Patent Infringement Warnings: Did you know that response strategies differ by country?
์ด ๊ธ€์—์„œ๋Š” ๋ฏธ๊ตญ, ์œ ๋Ÿฝ, ์ผ๋ณธ, ํ•œ๊ตญ์˜ ๋ฒ•์  ์ฐจ์ด๋ฅผ ๋ช…ํ™•ํžˆ ๋ถ„์„ํ•˜๊ณ , ํŠนํ—ˆ๊ถŒ์ž์™€ ์ˆ˜์‹ ์ž ๋ชจ๋‘๋ฅผ ์œ„ํ•œ ํ•ต์‹ฌ ์ „๋žต์„ ์‹ฌ์ธต์ ์œผ๋กœ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค.
This article clearly analyzes the legal differences in the United States, Europe, Japan, and South Korea, and provides in-depth core strategies for both patent holders and recipients.

1. ์„œ๋ก : ํŠนํ—ˆ ๊ฒฝ๊ณ ๊ถŒ์˜ ์ด์ค‘์  ๊ธฐ๋Šฅ๊ณผ ๊ตญ๊ฐ€๋ณ„ ์‹œ๊ฐ ์ฐจ์ด
1. Introduction: The Dual Function of the Right to Warn and Differences in National Perspectives

ํŠนํ—ˆ๊ถŒ ์นจํ•ด ๊ฒฝ๊ณ ์žฅ(์ดํ•˜ '๊ฒฝ๊ณ ์žฅ')์€ ๋‹จ์ˆœํžˆ ์นจํ•ด ์ค‘์ง€๋ฅผ ์š”๊ตฌํ•˜๋Š” ๋ฌธ์„œ๋ฅผ ๋„˜์–ด ๋‘ ๊ฐ€์ง€ ์ค‘์š”ํ•œ ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
A patent infringement warning letter (hereinafter 'warning letter') is more than just a document demanding cessation of infringement; it performs two important functions.

  • ๋ฒ•์  ํ†ต์ง€·์ฆ๊ฑฐ ๊ธฐ๋Šฅ:
    Legal Notice and Evidentiary Function:
    ์นจํ•ด์ž์—๊ฒŒ ๊ถŒ๋ฆฌ ์กด์žฌ์™€ ์นจํ•ด ์‚ฌ์‹ค์„ ๊ณต์‹์ ์œผ๋กœ ์•Œ๋ ค ์ฆ‰๊ฐ์ ์ธ ์ค‘๋‹จ์„ ์š”๊ตฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ–ฅํ›„ ์†Œ์†ก์—์„œ ๊ณ ์˜ ์นจํ•ด(willful infringement) ์ž…์ฆ ๋ฐ ์†ํ•ด๋ฐฐ์ƒ ์‚ฐ์ •์˜ ์ค‘์š”ํ•œ ๊ทผ๊ฑฐ๊ฐ€ ๋ฉ๋‹ˆ๋‹ค.
    It officially informs the infringer of the existence of the right and the fact of infringement, demanding immediate cessation. This becomes a crucial basis for proving willful infringement and calculating damages in future litigation.
  • ํ˜‘์ƒ ๊ฐœ์‹œ ๊ธฐ๋Šฅ:
    Negotiation Initiation Function:
    ์†Œ์†ก์„ ํ”ผํ•˜๊ณ  ๋ผ์ด์„ ์Šค ๊ณ„์•ฝ ๋“ฑ ์ƒ์—…์  ํ•ด๊ฒฐ์„ ์œ ๋„ํ•˜๋Š” ๊ต์„ญ์˜ ์ถœ๋ฐœ์ ์ด ๋ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ๋…์ผ๋ฒ•์ƒ 'Abmahnung(์‚ฌ์ „ ๊ฒฝ๊ณ )'์€ ์นจํ•ด ์ค‘์ง€์™€ ํ•จ๊ป˜ ์œ„์•ฝ๋ฒŒ ์•ฝ์ •์ด ํฌํ•จ๋œ ์นจํ•ด์ค‘๋‹จ ์„ ์–ธ(cease-and-desist declaration)์„ ์ œ์•ˆํ•˜๋Š” ๊ณต์‹ ์ ˆ์ฐจ๋กœ ์ž๋ฆฌ ์žก์•˜์Šต๋‹ˆ๋‹ค.
    It serves as a starting point for negotiations to avoid litigation and induce commercial resolutions such as license agreements. In particular, under German law, 'Abmahnung' (a formal warning) has become an established official procedure that proposes a cease-and-desist declaration, which includes a penalty clause, along with the cessation of infringement.

๊ทธ๋Ÿฌ๋‚˜ ๊ฐ๊ตญ์€ ๊ฒฝ๊ณ ๊ถŒ์˜ ๋ฒ•์  ์„ฑ๊ฒฉ์— ๋Œ€ํ•ด ๊ทผ๋ณธ์ ์œผ๋กœ ๋‹ค๋ฅธ ์‹œ๊ฐ์„ ์ทจํ•ฉ๋‹ˆ๋‹ค. ๋ฏธ๊ตญ์€ ์ด๋ฅผ ํŠนํ—ˆ๊ถŒ์— ๋‚ด์žฌ๋œ ๋ณธ์งˆ์  ๊ถŒ๋Šฅ์œผ๋กœ ํญ๋„“๊ฒŒ ๋ณดํ˜ธํ•˜๋Š” ๋ฐ˜๋ฉด, ํ•œ๊ตญ์€ ์ž๋ ฅ๊ตฌ์ œ์  ์„ฑ๊ฒฉ์œผ๋กœ ์œ„ํ—˜์‹œํ•˜๋ฉฐ ์—„๊ฒฉํžˆ ํ†ต์ œํ•ฉ๋‹ˆ๋‹ค. ์œ ๋Ÿฝ์€ ๊ฒฝ์Ÿ๋ฒ•๊ณผ ๋น„๋ฐฉ ๊ธˆ์ง€ ์›์น™์„ ํ†ตํ•œ ์‹œ์žฅ์งˆ์„œ ๋ณดํ˜ธ์— ์ค‘์ ์„ ๋‘๊ณ , ์ผ๋ณธ์€ ์ ˆ์ฐจ์  ์ •๋‹น์„ฑ ์ค€์ˆ˜๋ฅผ ๊ฐ€์žฅ ์ค‘์‹œํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ฒ ํ•™์  ์ฐจ์ด๋Š” ์ •๋‹น์„ฑ ์š”๊ฑด, ์ž…์ฆ ์ฑ…์ž„, ์ œ์žฌ ์ˆ˜๋‹จ ์ „๋ฐ˜์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค.
However, each country takes a fundamentally different view on the legal nature of the right to warn. The United States broadly protects it as an inherent power of the patent right, whereas South Korea views it as a form of self-help, considering it risky and strictly controlling it. Europe focuses on protecting market order through competition law and principles against defamation, while Japan places the highest importance on adherence to procedural legitimacy. These philosophical differences have a significant impact on justification requirements, the burden of proof, and enforcement measures.

2. ์ฃผ์š” 4๊ฐœ๊ตญ๋ณ„ ์ƒ์„ธ ๋ถ„์„
2. Detailed Analysis by Four Major Countries

2.1 ๋ฏธ๊ตญ (United States) ๐Ÿ‡บ๐Ÿ‡ธ

  • ๋ฒ•์  ์„ฑ์งˆ:
    Legal Nature:
    'Good Faith' ์›์น™ ํ•˜์— ์ •๋‹นํ•œ ๊ถŒ๋ฆฌ ํ–‰์‚ฌ๋กœ ํญ๋„“๊ฒŒ ์ธ์ •๋ฉ๋‹ˆ๋‹ค. ์—ฐ๋ฐฉ๋Œ€๋ฒ•์›์€ ํŠนํ—ˆ๊ถŒ์ž์˜ ์„ ์˜์˜ ๊ฒฝ๊ณ ๋Š” ๋ฐ˜๋…์ ๋ฒ• ์œ„๋ฐ˜์ด ์•„๋‹ˆ๋ผ๊ณ  ํŒ์‹œํ–ˆ์œผ๋ฉฐ (Virtue v. Creamery Package Mfg. Co., 1913), ์ด๋Š” ์ˆ˜์ •ํ—Œ๋ฒ• ์ œ1์กฐ์˜ ํ‘œํ˜„์˜ ์ž์œ ์™€๋„ ์—ฐ๊ฒฐ๋ฉ๋‹ˆ๋‹ค.
    It is broadly recognized as a legitimate exercise of rights under the 'Good Faith' principle. The Supreme Court has held that a patent holder's good-faith warning does not violate antitrust laws (Virtue v. Creamery Package Mfg. Co., 1913), and this is also connected to the First Amendment's freedom of speech.
  • ์•…์˜(Bad Faith) ํŒ๋‹จ:
    Determination of Bad Faith:
    ํ•ฉ๋ฆฌ์ ์œผ๋กœ ์Šน์†Œ๋ฅผ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์—†๋Š” '๊ฐ๊ด€์  ๋ฌด๊ทผ๊ฑฐ์„ฑ'๊ณผ ์ด๋ฅผ ์•Œ๋ฉด์„œ๋„ ํ•ฉ์˜๊ธˆ ๊ฐˆ์ทจ ๋“ฑ ๋ถ€๋‹นํ•œ ๋ชฉ์ ์œผ๋กœ ๋ฐœ์†กํ•œ '์ฃผ๊ด€์  ์•…์˜'๊ฐ€ ๋ชจ๋‘ ์ž…์ฆ๋  ๊ฒฝ์šฐ ์•…์˜๋กœ ํŒ๋‹จ๋ฉ๋‹ˆ๋‹ค.
    Bad faith is determined when both 'objective baselessness' (where a reasonable party could not expect to win) and 'subjective bad faith' (sending the warning with improper motives like extorting settlement money, knowing it is baseless) are proven.
  • ์ œ์žฌ ๋ฐ ๋Œ€์‘:
    Sanctions and Responses:
    30์—ฌ ๊ฐœ ์ฃผ์—์„œ 'Bad Faith Patent Assertion Law'๋ฅผ ํ†ตํ•ด ๊ณผ๋„ํ•œ ์š”๊ตฌ, ํ—ˆ์œ„ ์ •๋ณด ๋“ฑ์„ ๊ธˆ์ง€ํ•˜๋ฉฐ, ์œ„๋ฐ˜ ์‹œ ์†ํ•ด๋ฐฐ์ƒ, ์†Œ์†ก๋น„์šฉ, ์ง•๋ฒŒ์  ๋ฐฐ์ƒ๊นŒ์ง€ ๋ถ€๊ณผ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    In over 30 states, 'Bad Faith Patent Assertion Laws' prohibit excessive demands, false information, etc., and violations can lead to damages, attorney's fees, and even punitive damages.

2.2 ์œ ๋Ÿฝ (European Union) ๐Ÿ‡ช๐Ÿ‡บ

  • ๋ฒ•์  ์„ฑ์งˆ:
    Legal Nature:
    ๊ถŒ๋ฆฌ ํ–‰์‚ฌ๋Š” ์ธ์ •๋˜๋‚˜, EU ๊ฒฝ์Ÿ๋ฒ•(TFEU ์ œ102์กฐ)๊ณผ ๋น„๋ฐฉ ๊ธˆ์ง€ ์›์น™์˜ ์ œ์•ฝ์ด ๊ฐ•๋ ฅํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ์‹œ์žฅ์ง€๋ฐฐ์  ์ง€์œ„ ๋‚จ์šฉ ์‹œ ๋ง‰๋Œ€ํ•œ ๊ณผ์ง•๊ธˆ์ด ๋ถ€๊ณผ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    The exercise of rights is recognized, but it is strongly constrained by EU competition law (Article 102 TFEU) and principles against defamation. In particular, abuse of a dominant market position can result in substantial fines.
  • ๊ตญ๊ฐ€๋ณ„ ํŠน์ง•:
    Country-Specific Features:
    ํ”„๋ž‘์Šค๋Š” ํŒ๊ฒฐ ์ „ ๊ฒฝ์Ÿ์‚ฌ ๊ฑฐ๋ž˜์ฒ˜์— ์นจํ•ด๋ฅผ ๋‹จ์ •ํ•˜๋ฉด ๋น„๋ฐฉ ํ–‰์œ„๋กœ, ๋…์ผ์€ ํ—ˆ์œ„·๊ณผ์žฅ ์ฃผ์žฅ์„ ๋ถˆ๊ณต์ •๊ฒฝ์Ÿ๋ฐฉ์ง€๋ฒ• ์œ„๋ฐ˜์œผ๋กœ ๋ด…๋‹ˆ๋‹ค. ์˜๊ตญ์€ 2์ฐจ ํ–‰์œ„์ž(์œ ํ†ต์—…์ฒด ๋“ฑ)์— ๋Œ€ํ•œ ์œ„ํ˜‘์„ ์›์น™์ ์œผ๋กœ ๊ธˆ์ง€ํ•ฉ๋‹ˆ๋‹ค.
    France considers asserting infringement to a competitor's clients before a court ruling as defamation (dรฉnigrement), while Germany sees false or exaggerated claims as a violation of the Unfair Competition Prevention Act. The UK generally prohibits threats against secondary actors (like distributors).
  • SEP์™€ FRAND ์˜๋ฌด:
    SEP and FRAND Obligations:
    ํ‘œ์ค€ํ•„์ˆ˜ํŠนํ—ˆ(SEP) ๋ณด์œ ์ž๋Š” ์†Œ์†ก ์ „ ๋ฐ˜๋“œ์‹œ FRAND ํ˜‘์ƒ ์ ˆ์ฐจ๋ฅผ ์ดํ–‰ํ•ด์•ผ ํ•˜๋ฉฐ, ์œ„๋ฐ˜ ์‹œ ์ง€์œ„ ๋‚จ์šฉ์œผ๋กœ ์ œ์žฌ๋ฐ›์Šต๋‹ˆ๋‹ค (Huawei v. ZTE ํŒ๋ก€).
    Holders of Standard Essential Patents (SEPs) must follow FRAND negotiation procedures before litigation; failure to do so is considered an abuse of position and is subject to sanctions (Huawei v. ZTE case).

2.3 ์ผ๋ณธ (Japan) ๐Ÿ‡ฏ๐Ÿ‡ต

  • ๋ฒ•์  ์„ฑ์งˆ:
    Legal Nature:
    ์„ ์˜๋‚˜ ์•…์˜๋ณด๋‹ค '์ ˆ์ฐจ์  ์ •๋‹น์„ฑ' ์ค€์ˆ˜๋ฅผ ํ•ต์‹ฌ์œผ๋กœ ๋ด…๋‹ˆ๋‹ค.
    The core focus is on adherence to 'procedural legitimacy' rather than good or bad faith.
  • ์ •๋‹น์„ฑ ์š”๊ฑด:
    Justification Requirements:
    ์œ ํ†ต์—…์ฒด๋‚˜ ๊ณ ๊ฐ๋ณด๋‹ค ์ œ์กฐ์‚ฌ/์ˆ˜์ž…์—…์ž์—๊ฒŒ ์šฐ์„ ์ ์œผ๋กœ ๊ฒฝ๊ณ ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ์‹ค์šฉ์‹ ์•ˆ๊ถŒ์€ ๊ถŒ๋ฆฌ ํ–‰์‚ฌ๋ฅผ ์œ„ํ•ด ๋ฐ˜๋“œ์‹œ ํŠนํ—ˆ์ฒญ(JPO) ๊ธฐ์ˆ ํ‰๊ฐ€์„œ๋ฅผ ์ฒจ๋ถ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
    Warnings should be sent to manufacturers/importers first, before distributors or customers. For utility model rights, a technical evaluation report from the JPO must be attached to exercise the right.
  • ์œ„๋ฒ•์„ฑ ํŒ๋‹จ:
    Determination of Illegality:
    ๋ฌดํšจ ํŠนํ—ˆ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฒฝ๊ณ , ๊ธฐ์ˆ ํ‰๊ฐ€์„œ ์—†๋Š” ์‹ค์šฉ์‹ ์•ˆ ๊ฒฝ๊ณ  ๋“ฑ ์ ˆ์ฐจ์  ์š”๊ฑด์„ ์ง€ํ‚ค์ง€ ์•Š์œผ๋ฉด ๋ถˆ๋ฒ•ํ–‰์œ„๋กœ ํ‰๊ฐ€๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
    Failure to comply with procedural requirements, such as warnings based on an invalid patent or a utility model warning without a technical evaluation report, can be deemed an illegal act.

2.4 ํ•œ๊ตญ (South Korea) ๐Ÿ‡ฐ๐Ÿ‡ท

  • ๋ฒ•์  ์„ฑ์งˆ:
    Legal Nature:
    ๊ฒฝ๊ณ ์žฅ์€ ์›์น™์ ์œผ๋กœ ์‚ฌ๋ฒ•์ ˆ์ฐจ๋ฅผ ์šฐํšŒํ•˜๋Š” '์ž๋ ฅ๊ตฌ์ œ ํ–‰์œ„'๋กœ ๊ฐ„์ฃผ๋˜์–ด, ๋ฒ•์น˜์ฃผ์˜ ์ด๋…์— ๋ฐ˜ํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๋ด…๋‹ˆ๋‹ค.
    A warning letter is, in principle, considered an act of 'self-help' that bypasses judicial procedures and may conflict with the principle of the rule of law.
  • ํŒ๋ก€ ๊ฒฝํ–ฅ:
    Case Law Trends:
    ๋ฌดํšจ๊ฐ€ ํ™•์ •๋œ ๊ถŒ๋ฆฌ๋กœ ๊ฑฐ๋ž˜์ฒ˜์— ๊ฒฝ๊ณ ์žฅ์„ ๋ฐœ์†กํ•œ ํ–‰์œ„๋ฅผ ๋ถˆ๋ฒ•ํ–‰์œ„(์˜์—…๋ฐฉํ•ด)๋กœ ์ธ์ •ํ•œ ๋ฐ” ์žˆ์œผ๋ฉฐ(ํŠนํ—ˆ๋ฒ•์› 2020๋‚˜1100), "๋…์ž์  ํŒ๋‹จ์— ๋”ฐ๋ผ ๋ˆ„๊ตฌ์—๊ฒŒ๋‚˜ ์ž„์˜๋กœ ์š”๊ตฌํ•  ์ˆ˜ ์—†๋‹ค"๊ณ  ๋ช…์‹œํ–ˆ์Šต๋‹ˆ๋‹ค.
    Courts have recognized the act of sending a warning letter to a business partner based on a right that was later invalidated as an illegal act (tort of business interference) (Patent Court Case 2020Na1100), stating that "one cannot arbitrarily make demands on anyone based on one's own judgment."
  • ์œ„๋ฒ•์„ฑ ํŒ๋‹จ:
    Determination of Illegality:
    ์นจํ•ด ์—ฌ๋ถ€๊ฐ€ ๋ถˆ๋ถ„๋ช…ํ•œ ์ƒํƒœ์—์„œ ๊ฑฐ๋ž˜์ฒ˜์— ๊ฒฝ๊ณ ํ•˜๊ฑฐ๋‚˜, ์นจํ•ด๋ฅผ ๋‹จ์ •ํ•˜๋Š” ํ‘œํ˜„์„ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, ๋ฌดํšจ ํŠนํ—ˆ์— ๊ธฐ๋ฐ˜ํ•ด ๊ฒฝ๊ณ ํ•˜๋Š” ๊ฒฝ์šฐ ์œ„๋ฒ•์œผ๋กœ ํŒ๋‹จ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Šต๋‹ˆ๋‹ค.
    It is highly likely to be deemed illegal if a warning is sent to business partners when infringement is unclear, uses definitive language asserting infringement, or is based on an invalid patent.

3. ๊ทœ์ œ ๋™ํ–ฅ ๋ฐ ๋ฏธ๋ž˜ ์ „๋ง (3~5๋…„)
3. Regulatory Trends and Future Outlook (3-5 Years)

ํŠนํ—ˆ ๊ฒฝ๊ณ ๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ๋ฒ•์  ํ™˜๊ฒฝ์€ ๊ณ„์† ์ง„ํ™”ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํ–ฅํ›„ 3~5๋…„๊ฐ„ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ณ€ํ™”๊ฐ€ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค.
The legal environment surrounding patent warnings continues to evolve. The following changes are expected over the next 3-5 years.

  • ํ”Œ๋žซํผ ์‚ฌ์—…์ž ์ฑ…์ž„ ๊ฐ•ํ™”:
    Strengthening Platform Operator Liability:
    EU์˜ ๋””์ง€ํ„ธ ์„œ๋น„์Šค๋ฒ•(DSA)๊ณผ ๊ฐ™์ด ํ”Œ๋žซํผ์— 'ํ†ต์ง€-์กฐ์น˜' ์˜๋ฌด๋ฅผ ๋ถ€๊ณผํ•˜๊ณ , ํ”Œ๋žซํผ ๊ธฐ๋ฐ˜ ๊ฒฝ๊ณ  ํ–‰์œ„์˜ ๊ด€ํ• ๊ถŒ ๋ฆฌ์Šคํฌ๊ฐ€ ๋ถ€๊ฐ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.
    Like the EU's Digital Services Act (DSA), 'notice-and-takedown' obligations will be imposed on platforms, and the jurisdictional risks of platform-based warning activities will become more prominent.
  • AI ํ™œ์šฉ ์ž๋™ ๊ฒฝ๊ณ  ์‹œ์Šคํ…œ:
    AI-Powered Automated Warning Systems:
    AI ๊ธฐ๋ฐ˜ ํŠนํ—ˆ ๋ถ„์„ ๋ฐ ๊ฒฝ๊ณ  ์ดˆ์•ˆ ์ƒ์„ฑ์ด ๋ณดํŽธํ™”๋˜๊ฒ ์ง€๋งŒ, ์˜ค๋ฅ˜๋กœ ์ธํ•œ ๋ฌด๊ทผ๊ฑฐ ๊ฒฝ๊ณ  ์‹œ ์ฑ…์ž„ ์†Œ์žฌ๊ฐ€ ์ƒˆ๋กœ์šด ๋ฒ•์  ์Ÿ์ ์œผ๋กœ ๋– ์˜ค๋ฅผ ๊ฒƒ์ž…๋‹ˆ๋‹ค.
    AI-based patent analysis and the generation of draft warning letters will become common, but the issue of liability for baseless warnings due to errors will emerge as a new legal battleground.
  • 'Bad Faith' ๊ทœ์ œ ๊ฐ•ํ™” ์ถ”์„ธ:
    Trend of Strengthening 'Bad Faith' Regulations:
    ๋ฏธ๊ตญ, ์œ ๋Ÿฝ, ํ•œ๊ตญ, ์ผ๋ณธ ๋ชจ๋‘ ์•…์˜์ ์ด๊ฑฐ๋‚˜ ๋ถ€๋‹นํ•œ ํŠนํ—ˆ ๊ฒฝ๊ณ  ํ–‰์œ„์— ๋Œ€ํ•œ ๊ทœ์ œ๋ฅผ ๊ฐ•ํ™”ํ•˜๋Š” ์ถ”์„ธ์ž…๋‹ˆ๋‹ค.
    The US, Europe, South Korea, and Japan are all moving towards strengthening regulations against malicious or unfair patent warning practices.

4. ๊ฒฐ๋ก  ๋ฐ ์ „๋žต์  ์ œ์–ธ
4. Conclusion and Strategic Recommendations

์ข…ํ•ฉ ๋ถ„์„: ๊ตญ๊ฐ€๋ณ„ ์ ‘๊ทผ ๋ฐฉ์‹ ์š”์•ฝ
Overall Analysis: Summary of National Approaches

  • ๋ฏธ๊ตญ:
    United States:
    ๊ถŒ๋ฆฌ ์ค‘์‹ฌ์  ์ ‘๊ทผ (์„ ์˜ ๋ณดํ˜ธ, ์•…์˜ ์ž…์ฆ์€ ์ˆ˜์‹ ์ž ์ฑ…์ž„)
    Rights-centric approach (protection of good faith, burden of proof for bad faith lies with the recipient)
  • ์œ ๋Ÿฝ:
    Europe:
    ์‹œ์žฅ ์ค‘์‹ฌ์  ์ ‘๊ทผ (๊ฒฝ์Ÿ๋ฒ•์„ ํ†ตํ•œ ์‹œ์žฅ ์งˆ์„œ ๋ณดํ˜ธ)
    Market-centric approach (protection of market order through competition law)
  • ์ผ๋ณธ:
    Japan:
    ์ ˆ์ฐจ ์ค‘์‹ฌ์  ์ ‘๊ทผ (๊ฒฝ๊ณ  ์ ˆ์ฐจ ์ค€์ˆ˜ ์—ฌ๋ถ€๊ฐ€ ํ•ต์‹ฌ)
    Procedure-centric approach (compliance with warning procedures is key)
  • ํ•œ๊ตญ:
    South Korea:
    ์‚ฌ๋ฒ• ์ค‘์‹ฌ์  ์ ‘๊ทผ (์ž๋ ฅ๊ตฌ์ œ ๊ธˆ์ง€, ์‚ฌ๋ฒ•์ ˆ์ฐจ ๋‚ด ํ•ด๊ฒฐ ๊ฐ•์กฐ)
    Judiciary-centric approach (prohibition of self-help, emphasis on resolution within judicial procedures)

4.2 ํŠนํ—ˆ๊ถŒ์ž๋ฅผ ์œ„ํ•œ ์ „๋žต
4.2 Strategies for Patent Holders

  • ์‚ฌ์ „ ์‹ค์‚ฌ:
    Prior Due Diligence:
    ํŠนํ—ˆ์˜ ์œ ํšจ์„ฑ๊ณผ ์นจํ•ด ๋ถ„์„์„ ํ™•์‹คํžˆ ํ•˜๊ณ , 1์ฐจ ์นจํ•ด์ž(์ œ์กฐ์‚ฌ/์ˆ˜์ž…์—…์ž)๋ฅผ ํŠน์ •ํ•ฉ๋‹ˆ๋‹ค.
    Thoroughly analyze patent validity and infringement, and identify the primary infringer (manufacturer/importer).
  • ๊ด€ํ• ๊ถŒ๋ณ„ ์œ ์˜์‚ฌํ•ญ ํ™•์ธ:
    Check Jurisdiction-Specific Considerations:
    ๋ฏธ๊ตญ์—์„œ๋Š” ์ฃผ๋ฒ•๋ณ„ Bad Faith ๋ฒ•๋ฅ ์„, ์œ ๋Ÿฝ์—์„œ๋Š” SEP ์ ˆ์ฐจ๋ฅผ, ์ผ๋ณธ์—์„œ๋Š” ์ œ์กฐ์‚ฌ ์šฐ์„  ์›์น™์„, ํ•œ๊ตญ์—์„œ๋Š” ์ œ3์ž ๊ฒฝ๊ณ  ์ž์ œ๋ฅผ ๋ฐ˜๋“œ์‹œ ์œ ๋…ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
    One must be mindful of state-specific Bad Faith laws in the US, SEP procedures in Europe, the manufacturer-first principle in Japan, and refraining from third-party warnings in South Korea.
  • ์—ญ์†Œ์†ก ๋Œ€๋น„:
    Prepare for Counter-litigation:
    ์ƒ๋Œ€๋ฐฉ์˜ ํ™•์ธ์†Œ์†ก ์ œ๊ธฐ ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€๋น„ํ•˜๊ณ , ์ „๋ฌธ๊ฐ€ ์˜๊ฒฌ์„œ ๋“ฑ์„ ํ™•๋ณดํ•˜์—ฌ ๋ฐฉ์–ด ๋…ผ๋ฆฌ๋ฅผ ๊ฐ–์ถฅ๋‹ˆ๋‹ค.
    Prepare for the possibility of a declaratory judgment action from the other party and build a defense logic by securing expert opinions.

4.3 ์ˆ˜์‹ ์ž๋ฅผ ์œ„ํ•œ ๋Œ€์‘ ์ „๋žต
4.3 Response Strategies for Recipients

  • ์ดˆ๊ธฐ ๋Œ€์‘:
    Initial Response:
    ๊ฒฝ๊ณ ์žฅ์„ ๋ฌด์‹œํ•˜์ง€ ๋ง๊ณ  ์ฆ‰์‹œ ๋ฒ•๋ฅ  ๊ฒ€ํ† ๋ฅผ ํ†ตํ•ด ํŠนํ—ˆ ์œ ํšจ์„ฑ ๋ฐ ๋น„์นจํ•ด ๋…ผ๋ฆฌ๋ฅผ ํ™•๋ณดํ•ฉ๋‹ˆ๋‹ค.
    Do not ignore the warning letter; immediately seek legal review to establish arguments for patent invalidity and non-infringement.
  • ๋ฒ•์  ๋Œ€์‘:
    Legal Action:
    ๋ฏธ๊ตญ์˜ ํ™•์ธ์†Œ์†ก, ์œ ๋Ÿฝ์˜ ๊ฒฝ์Ÿ๋ฒ• ์œ„๋ฐ˜ ์†Œ์†ก, ์ผ๋ณธ์˜ ์ ˆ์ฐจ ์œ„๋ฐ˜ ์ฃผ์žฅ, ํ•œ๊ตญ์˜ ์˜์—…๋ฐฉํ•ด์— ๋”ฐ๋ฅธ ์†ํ•ด๋ฐฐ์ƒ ์ฒญ๊ตฌ ๋ฐ ๊ณต์ •์œ„ ์ œ์†Œ ๋“ฑ ๊ตญ๊ฐ€๋ณ„ ์ƒํ™ฉ์— ๋งž๋Š” ์ ๊ทน์ ์ธ ๋Œ€์‘์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค.
    Consider active responses tailored to each country's situation, such as declaratory judgment actions in the US, competition law violation lawsuits in Europe, claims of procedural violation in Japan, or claims for damages for business interference and filings with the Fair Trade Commission in South Korea.
※ ๋ฒ•์  ๊ณ ์ง€ ※
※ Legal Notice ※

๋ณธ ๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ๋Š” ์ผ๋ฐ˜์ ์ธ ์ •๋ณด ์ œ๊ณต์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๋ฉฐ, ํŠน์ • ์‚ฌ์•ˆ์— ๋Œ€ํ•œ ๋ฒ•๋ฅ ์  ์ž๋ฌธ์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๊ฐœ๋ณ„์ ์ธ ๋ฒ•๋ฅ  ๋ฌธ์ œ์— ๋Œ€ํ•ด์„œ๋Š” ๋ฐ˜๋“œ์‹œ ์ „๋ฌธ๊ฐ€์™€ ์ƒ๋‹ดํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.
This blog post is for general informational purposes only and cannot substitute for legal advice on specific matters. Please be sure to consult with a professional regarding individual legal issues.

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๊ฐ€ ๋งํ•˜๋Š” LLM๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์˜ ๋ฏธ๋ž˜: 'ํ™˜๊ฐ'์€ ๊ฒฐํ•จ์ด ์•„๋‹ˆ๋‹ค? Martin Fowler on the Future of LLM and Software Development: Is 'Hallucination' Not a Flaw?

 

LLM์˜ 'ํ™˜๊ฐ'์ด ๊ฒฐํ•จ์ด ์•„๋‹ˆ๋ผ๊ณ ?
Is LLM's 'Hallucination' Not a Flaw?

์„ธ๊ณ„์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ์‚ฌ์ƒ๊ฐ€ ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๊ฐ€ ์ œ์‹œํ•˜๋Š” LLM ์‹œ๋Œ€์˜ ๊ฐœ๋ฐœ ํŒจ๋Ÿฌ๋‹ค์ž„! ๊ทธ์˜ ๋‚ ์นด๋กœ์šด ํ†ต์ฐฐ์„ ํ†ตํ•ด '๋น„๊ฒฐ์ •์„ฑ'๊ณผ ์ƒˆ๋กœ์šด ๋ณด์•ˆ ์œ„ํ˜‘ ๋“ฑ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋งˆ์ฃผํ•  ๋ฏธ๋ž˜๋ฅผ ๋ฏธ๋ฆฌ ํ™•์ธํ•ด ๋ณด์„ธ์š”.
The development paradigm for the LLM era presented by world-renowned software development thinker Martin Fowler! Get a preview of the future developers will face, including 'non-determinism' and new security threats, through his sharp insights.

์•ˆ๋…•ํ•˜์„ธ์š”! ์š”์ฆ˜ ๋„ˆ๋‚˜ ํ•  ๊ฒƒ ์—†์ด AI, ํŠนํžˆ LLM(๋Œ€๊ทœ๋ชจ ์–ธ์–ด ๋ชจ๋ธ)์„ ์—…๋ฌด์— ํ™œ์šฉํ•˜๊ณ  ์žˆ์ฃ . ์ฝ”๋“œ๋ฅผ ์งœ๊ฒŒ ํ•˜๊ฑฐ๋‚˜, ์•„์ด๋””์–ด๋ฅผ ์–ป๊ฑฐ๋‚˜, ์‹ฌ์ง€์–ด๋Š” ๋ณต์žกํ•œ ๊ฐœ๋…์„ ์„ค๋ช…ํ•ด๋‹ฌ๋ผ๊ณ  ํ•˜๊ธฐ๋„ ํ•˜๊ณ ์š”. ์ € ์—ญ์‹œ LLM์˜ ํŽธ๋ฆฌํ•จ์— ํ‘น ๋น ์ ธ ์ง€๋‚ด๊ณ  ์žˆ๋Š”๋ฐ์š”, ๋ฌธ๋“ ์ด๋Ÿฐ ์ƒ๊ฐ์ด ๋“ค๋”๋ผ๊ณ ์š”. '๊ณผ์—ฐ ์šฐ๋ฆฌ๋Š” ์ด ๋„๊ตฌ๋ฅผ ์ œ๋Œ€๋กœ ์ดํ•ดํ•˜๊ณ  ์‚ฌ์šฉํ•˜๊ณ  ์žˆ๋Š” ๊ฑธ๊นŒ?'
Hello! Nowadays, everyone is using AI, especially LLMs (Large Language Models), for work. We make them write code, get ideas, or even ask them to explain complex concepts. I'm also deeply immersed in the convenience of LLMs, but a thought suddenly struck me: 'Are we truly understanding and using this tool correctly?'

์ด๋Ÿฐ ๊ณ ๋ฏผ์˜ ์™€์ค‘์— ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ ๋ถ„์•ผ์˜ ์„ธ๊ณ„์ ์ธ ๊ตฌ๋ฃจ, ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ(Martin Fowler)๊ฐ€ ์ตœ๊ทผ LLM๊ณผ ์†Œํ”„ํŠธ์›จ์–ด ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ์ƒ๊ฐ์„ ์ •๋ฆฌํ•œ ๊ธ€์„ ์ฝ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ 'LLM์€ ๋Œ€๋‹จํ•ด!' ์ˆ˜์ค€์„ ๋„˜์–ด, ๊ทธ ๋ณธ์งˆ์ ์ธ ํŠน์„ฑ๊ณผ ์šฐ๋ฆฌ๊ฐ€ ์•ž์œผ๋กœ ๋งˆ์ฃผํ•˜๊ฒŒ ๋  ๋ณ€ํ™”์— ๋Œ€ํ•œ ๊นŠ์ด ์žˆ๋Š” ํ†ต์ฐฐ์ด ๋‹ด๊ฒจ ์žˆ์—ˆ์ฃ . ์˜ค๋Š˜์€ ์—ฌ๋Ÿฌ๋ถ„๊ณผ ํ•จ๊ป˜ ๊ทธ์˜ ์ƒ๊ฐ์„ ๋”ฐ๋ผ๊ฐ€ ๋ณด๋ ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๐Ÿ˜Š
While pondering this, I came across an article by Martin Fowler, a world-renowned guru in the software development field, who recently summarized his thoughts on LLMs and software development. It went beyond a simple 'LLMs are amazing!' level, offering deep insights into their fundamental nature and the changes we will face. Today, I'd like to explore his thoughts with you. ๐Ÿ˜Š

LLM and Software Development

 

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ, LLM์˜ ํ˜„์ฃผ์†Œ๋ฅผ ๋งํ•˜๋‹ค ๐Ÿค”
Martin Fowler on the Current State of LLMs ๐Ÿค”

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๋Š” ๋จผ์ € ํ˜„์žฌ AI ์‚ฐ์—…์ด ๋ช…๋ฐฑํ•œ '๋ฒ„๋ธ”' ์ƒํƒœ์— ์žˆ๋‹ค๊ณ  ์ง„๋‹จํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ์—ญ์‚ฌ์ ์œผ๋กœ ๋ชจ๋“  ๊ธฐ์ˆ  ํ˜์‹ ์ด ๊ทธ๋ž˜์™”๋“ฏ, ๋ฒ„๋ธ”์ด ๊บผ์ง„ ํ›„์—๋„ ์•„๋งˆ์กด์ฒ˜๋Ÿผ ์‚ด์•„๋‚จ์•„ ์ƒˆ๋กœ์šด ์‹œ๋Œ€๋ฅผ ์—ฌ๋Š” ๊ธฐ์—…์ด ๋‚˜ํƒ€๋‚  ๊ฒƒ์ด๋ผ๊ณ  ๋ดค์–ด์š”. ์ค‘์š”ํ•œ ๊ฑด, ์ง€๊ธˆ ๋‹จ๊ณ„์—์„œ๋Š” ํ”„๋กœ๊ทธ๋ž˜๋ฐ์˜ ๋ฏธ๋ž˜๋‚˜ ํŠน์ • ์ง์—…์˜ ์•ˆ์ •์„ฑ์— ๋Œ€ํ•ด ๋ˆ„๊ตฌ๋„ ํ™•์‹คํžˆ ์•Œ ์ˆ˜ ์—†๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค.
Martin Fowler first diagnoses the current AI industry as being in a clear 'bubble' state. However, as with all technological innovations historically, he believes that even after the bubble bursts, companies like Amazon will survive and usher in a new era. The important thing is that at this stage, no one can be certain about the future of programming or the job security of specific professions.

๊ทธ๋ž˜์„œ ๊ทธ๋Š” ์„ฃ๋ถ€๋ฅธ ์˜ˆ์ธก๋ณด๋‹ค๋Š” ๊ฐ์ž LLM์„ ์ง์ ‘ ์‚ฌ์šฉํ•ด๋ณด๊ณ , ๊ทธ ๊ฒฝํ—˜์„ ์ ๊ทน์ ์œผ๋กœ ๊ณต์œ ํ•˜๋Š” ์‹คํ—˜์ ์ธ ์ž์„ธ๊ฐ€ ์ค‘์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ ๋ชจ๋‘๊ฐ€ ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ํƒํ—˜ํ•˜๋Š” ๊ฐœ์ฒ™์ž๊ฐ€ ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ์˜๋ฏธ๊ฒ ์ฃ ?
Therefore, he emphasizes that an experimental attitude of personally using LLMs and actively sharing those experiences is more important than making hasty predictions. This implies that we all need to become pioneers exploring this new tool, right?

๐Ÿ’ก ์•Œ์•„๋‘์„ธ์š”!
๐Ÿ’ก Good to know!

ํŒŒ์šธ๋Ÿฌ๋Š” ์ตœ๊ทผ LLM ํ™œ์šฉ์— ๋Œ€ํ•œ ์„ค๋ฌธ์กฐ์‚ฌ๋“ค์ด ์‹ค์ œ ์‚ฌ์šฉ ํ๋ฆ„์„ ์ œ๋Œ€๋กœ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ง€์ ํ–ˆ์–ด์š”. ๋‹ค์–‘ํ•œ ๋ชจ๋ธ์˜ ๊ธฐ๋Šฅ ์ฐจ์ด๋„ ํฌ๊ธฐ ๋•Œ๋ฌธ์—, ๋‹ค๋ฅธ ์‚ฌ๋žŒ์˜ ์˜๊ฒฌ๋ณด๋‹ค๋Š” ์ž์‹ ์˜ ์ง์ ‘์ ์ธ ๊ฒฝํ—˜์„ ๋ฏฟ๋Š” ๊ฒƒ์ด ๋” ์ค‘์š”ํ•ด ๋ณด์ž…๋‹ˆ๋‹ค.
Fowler pointed out that recent surveys on LLM usage may not accurately reflect actual usage patterns. Since there are also significant differences in the capabilities of various models, it seems more important to trust your own direct experience rather than the opinions of others.

 

LLM์˜ ํ™˜๊ฐ: ๊ฒฐํ•จ์ด ์•„๋‹Œ ๋ณธ์งˆ์  ํŠน์ง• ๐Ÿง 
LLM Hallucination: An Intrinsic Feature, Not a Flaw ๐Ÿง 

์ด๋ฒˆ ๊ธ€์—์„œ ๊ฐ€์žฅ ํฅ๋ฏธ๋กœ์› ๋˜ ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค. ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ์‚ฌ์‹ค์ด ์•„๋‹Œ ์ •๋ณด๋ฅผ ๊ทธ๋Ÿด๋“ฏํ•˜๊ฒŒ ๋งŒ๋“ค์–ด๋‚ด๋Š” 'ํ™˜๊ฐ(Hallucination)' ํ˜„์ƒ์„ ๋‹จ์ˆœํ•œ '๊ฒฐํ•จ'์ด ์•„๋‹ˆ๋ผ '๋ณธ์งˆ์ ์ธ ํŠน์„ฑ'์œผ๋กœ ๋ด์•ผ ํ•œ๋‹ค๊ณ  ์ฃผ์žฅํ•ฉ๋‹ˆ๋‹ค. ์ •๋ง ์ถฉ๊ฒฉ์ ์ด์ง€ ์•Š๋‚˜์š”? LLM์€ ๊ฒฐ๊ตญ '์œ ์šฉ์„ฑ์ด ์žˆ๋Š” ํ™˜๊ฐ์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋„๊ตฌ'๋ผ๋Š” ๊ด€์ ์ž…๋‹ˆ๋‹ค.
This was the most interesting part of the article for me. Fowler argues that the 'hallucination' phenomenon, where LLMs create plausible but untrue information, should be seen as an 'intrinsic feature' rather than a mere 'flaw'. Isn't that shocking? The perspective is that LLMs are ultimately 'tools for generating useful hallucinations'.

์ด๋Ÿฐ ๊ด€์ ์—์„œ ๋ณด๋ฉด, ์šฐ๋ฆฌ๋Š” LLM์˜ ๋‹ต๋ณ€์„ ๋งน๋ชฉ์ ์œผ๋กœ ์‹ ๋ขฐํ•ด์„œ๋Š” ์•ˆ ๋ฉ๋‹ˆ๋‹ค. ์˜คํžˆ๋ ค ๋™์ผํ•œ ์งˆ๋ฌธ์„ ์—ฌ๋Ÿฌ ๋ฒˆ, ํ‘œํ˜„์„ ๋ฐ”๊ฟ”๊ฐ€๋ฉฐ ๋˜์ ธ๋ณด๊ณ  ๋‹ต๋ณ€์˜ ์ผ๊ด€์„ฑ์„ ํ™•์ธํ•˜๋Š” ์ž‘์—…์ด ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ํŠนํžˆ ์ˆซ์ž ๊ณ„์‚ฐ๊ณผ ๊ฐ™์ด ๊ฒฐ์ •์ ์ธ ๋‹ต์ด ํ•„์š”ํ•œ ๋ฌธ์ œ์— LLM์„ ์ง์ ‘ ์‚ฌ์šฉํ•˜๋ ค๋Š” ์‹œ๋„๋Š” ์ ์ ˆํ•˜์ง€ ์•Š๋‹ค๊ณ  ๋ง๋ถ™์˜€์Šต๋‹ˆ๋‹ค.
From this viewpoint, we should not blindly trust the answers from LLMs. Instead, it is essential to ask the same question multiple times with different phrasing to check for consistency in the answers. He added that attempting to use LLMs directly for problems requiring definitive answers, such as numerical calculations, is not appropriate.

⚠️ ์ฃผ์˜ํ•˜์„ธ์š”!
⚠️ Be careful!

ํŒŒ์šธ๋Ÿฌ๋Š” LLM์„ '์ฃผ๋‹ˆ์–ด ๊ฐœ๋ฐœ์ž'์— ๋น„์œ ํ•˜๋Š” ๊ฒƒ์— ๊ฐ•ํ•˜๊ฒŒ ๋น„ํŒํ•ฉ๋‹ˆ๋‹ค. LLM์€ "๋ชจ๋“  ํ…Œ์ŠคํŠธ ํ†ต๊ณผ!"๋ผ๊ณ  ์ž์‹  ์žˆ๊ฒŒ ๋งํ•˜๋ฉด์„œ ์‹ค์ œ๋กœ๋Š” ํ…Œ์ŠคํŠธ๋ฅผ ์‹คํŒจ์‹œํ‚ค๋Š” ์ฝ”๋“œ๋ฅผ ๋‚ด๋†“๋Š” ๊ฒฝ์šฐ๊ฐ€ ํ”ํ•˜์ฃ . ๋งŒ์•ฝ ์ธ๊ฐ„ ๋™๋ฃŒ๊ฐ€ ์ด๋Ÿฐ ํ–‰๋™์„ ๋ฐ˜๋ณตํ•œ๋‹ค๋ฉด, ์‹ ๋ขฐ๋ฅผ ์žƒ๊ณ  ์ธ์‚ฌ ๋ฌธ์ œ๋กœ ์ด์–ด์งˆ ์ˆ˜์ค€์˜ ์‹ฌ๊ฐํ•œ ๊ฒฐํ•จ์ด๋ผ๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. LLM์€ ๋™๋ฃŒ๊ฐ€ ์•„๋‹Œ, ๊ฐ•๋ ฅํ•˜์ง€๋งŒ ์‹ค์ˆ˜๋ฅผ ์ €์ง€๋ฅผ ์ˆ˜ ์žˆ๋Š” '๋„๊ตฌ'๋กœ ์ธ์‹ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
Fowler strongly criticizes the analogy of an LLM to a 'junior developer'. LLMs often confidently state "All tests passed!" while providing code that actually fails tests. If a human colleague were to do this repeatedly, it would be a serious flaw leading to a loss of trust and personnel issues. LLMs should be recognized not as colleagues, but as powerful 'tools' that can make mistakes.

 

์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™, '๋น„๊ฒฐ์ •์„ฑ' ์‹œ๋Œ€๋กœ์˜ ์ „ํ™˜ ๐ŸŽฒ
Software Engineering's Shift to an Era of 'Non-Determinism' ๐ŸŽฒ

์ „ํ†ต์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์€ '๊ฒฐ์ •๋ก ์ '์ธ ์„ธ๊ณ„ ์œ„์— ์„ธ์›Œ์ ธ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. '2+2'๋ฅผ ์ž…๋ ฅํ•˜๋ฉด '4'๊ฐ€ ๋‚˜์™€์•ผ ํ•˜๋“ฏ, ๋ชจ๋“  ๊ฒƒ์€ ์˜ˆ์ธก ๊ฐ€๋Šฅํ•˜๊ณ  ์ผ๊ด€์ ์ด์–ด์•ผ ํ–ˆ์ฃ . ์˜ˆ์ƒ๊ณผ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋Š” '๋ฒ„๊ทธ'๋กœ ์ทจ๊ธ‰๋˜์–ด ์ฆ‰์‹œ ์ˆ˜์ •๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
Traditional software engineering was built on a 'deterministic' world. Just as inputting '2+2' must yield '4', everything had to be predictable and consistent. Unexpected results were treated as 'bugs' and fixed immediately.

ํ•˜์ง€๋งŒ LLM์˜ ๋“ฑ์žฅ์€ ์ด๋Ÿฌํ•œ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๊ทผ๋ณธ์ ์œผ๋กœ ๋ฐ”๊พธ๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์— '๋น„๊ฒฐ์ •์„ฑ(Non-Determinism)'์„ ๋„์ž…ํ•˜๋Š” ์ „ํ™˜์ ์ด ๋  ๊ฒƒ์ด๋ผ๊ณ  ์ง„๋‹จํ•ฉ๋‹ˆ๋‹ค. ๋™์ผํ•œ ์š”์ฒญ์—๋„ LLM์€ ๋ฏธ๋ฌ˜ํ•˜๊ฒŒ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ๋ฌผ์„ ๋‚ด๋†“์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ๋Ÿด๋“ฏํ•ด ๋ณด์ด๋Š” ์ฝ”๋“œ ์•ˆ์— ์น˜๋ช…์ ์ธ ์˜ค๋ฅ˜๋ฅผ ์ˆจ๊ฒจ๋†“๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค.
However, the emergence of LLMs is fundamentally changing this paradigm. Fowler diagnoses that LLMs will be a turning point, introducing 'Non-Determinism' into software engineering. Even with the same request, an LLM can produce subtly different outputs and may hide critical errors within plausible-looking code.

์ด์ œ ๊ฐœ๋ฐœ์ž์˜ ์—ญํ• ์€ ๋‹จ์ˆœํžˆ ์ฝ”๋“œ๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด, LLM์ด ๋งŒ๋“ค์–ด๋‚ธ ๋ถˆํ™•์‹คํ•œ ๊ฒฐ๊ณผ๋ฌผ์„ ๋น„ํŒ์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š” ๋Šฅ๋ ฅ์ด ๋”์šฑ ์ค‘์š”ํ•ด์กŒ์Šต๋‹ˆ๋‹ค. ์•„๋ž˜ ํ‘œ๋กœ ๊ทธ ์ฐจ์ด๋ฅผ ๊ฐ„๋‹จํžˆ ์ •๋ฆฌํ•ด๋ดค์Šต๋‹ˆ๋‹ค.
Now, the role of a developer has become more about the ability to critically verify and manage the uncertain outputs generated by LLMs, going beyond simply writing code. I've summarized the differences in the table below.

๊ตฌ๋ถ„
Category
์ „ํ†ต์  ์†Œํ”„ํŠธ์›จ์–ด (๊ฒฐ์ •์ )
Traditional Software (Deterministic)
LLM ๊ธฐ๋ฐ˜ ์†Œํ”„ํŠธ์›จ์–ด (๋น„๊ฒฐ์ •์ )
LLM-based Software (Non-deterministic)
๊ฒฐ๊ณผ ์˜ˆ์ธก์„ฑ
Result Predictability
๋™์ผ ์ž…๋ ฅ, ๋™์ผ ๊ฒฐ๊ณผ ๋ณด์žฅ
Same input, same output guaranteed
๋™์ผ ์ž…๋ ฅ์—๋„ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ ๊ฐ€๋Šฅ
Different outputs possible for the same input
์˜ค๋ฅ˜์˜ ์ •์˜
Definition of Error
์˜ˆ์ธก์„ ๋ฒ—์–ด๋‚œ ๋ชจ๋“  ๋™์ž‘ (๋ฒ„๊ทธ)
Any behavior deviating from prediction (Bug)
๊ฒฐ๊ณผ์˜ ๋ถˆํ™•์‹ค์„ฑ (๋ณธ์งˆ์  ํŠน์„ฑ)
Uncertainty of results (Intrinsic feature)
๊ฐœ๋ฐœ์ž ์—ญํ• 
Developer's Role
์ •ํ™•ํ•œ ๋กœ์ง ๊ตฌํ˜„ ๋ฐ ๋””๋ฒ„๊น…
Implementing precise logic and debugging
๊ฒฐ๊ณผ๋ฌผ ๊ฒ€์ฆ ๋ฐ ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ
Verifying outputs and managing uncertainty

 

ํ”ผํ•  ์ˆ˜ ์—†๋Š” ์œ„ํ˜‘: ๋ณด์•ˆ ๋ฌธ์ œ ๐Ÿ”
The Unavoidable Threat: Security Issues ๐Ÿ”

๋งˆ์ง€๋ง‰์œผ๋กœ ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ์†Œํ”„ํŠธ์›จ์–ด ์‹œ์Šคํ…œ์˜ ๊ณต๊ฒฉ ํ‘œ๋ฉด์„ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ํ™•๋Œ€ํ•œ๋‹ค๋Š” ์‹ฌ๊ฐํ•œ ๊ฒฝ๊ณ ๋ฅผ ๋˜์ง‘๋‹ˆ๋‹ค. ํŠนํžˆ ๋ธŒ๋ผ์šฐ์ € ์—์ด์ „ํŠธ์™€ ๊ฐ™์ด ๋น„๊ณต๊ฐœ ๋ฐ์ดํ„ฐ ์ ‘๊ทผ, ์™ธ๋ถ€ ํ†ต์‹ , ์‹ ๋ขฐํ•  ์ˆ˜ ์—†๋Š” ์ฝ˜ํ…์ธ  ๋…ธ์ถœ์ด๋ผ๋Š” '์น˜๋ช…์  ์‚ผ์ค‘' ์œ„ํ—˜์„ ๊ฐ€์ง„ ๋„๊ตฌ๋“ค์€ ๊ทผ๋ณธ์ ์œผ๋กœ ์•ˆ์ „ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์ด ๊ทธ์˜ ์˜๊ฒฌ์ž…๋‹ˆ๋‹ค.
Finally, Fowler issues a serious warning that LLMs significantly expand the attack surface of software systems. He opines that tools with the 'lethal triple' risk of accessing private data, communicating externally, and being exposed to untrusted content, such as browser agents, are fundamentally difficult to secure.

์˜ˆ๋ฅผ ๋“ค์–ด, ์›น ํŽ˜์ด์ง€์— ์ธ๊ฐ„์˜ ๋ˆˆ์—๋Š” ๋ณด์ด์ง€ ์•Š๋Š” ๋ช…๋ น์–ด๋ฅผ ์ˆจ๊ฒจ LLM์„ ์†์ด๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๋ฏผ๊ฐํ•œ ๊ฐœ์ธ ์ •๋ณด๋ฅผ ์œ ์ถœํ•˜๋„๋ก ์œ ๋„ํ•˜๋Š” ๊ณต๊ฒฉ์ด ๊ฐ€๋Šฅํ•ด์ง‘๋‹ˆ๋‹ค. ๊ฐœ๋ฐœ์ž๋“ค์€ ์ด์ œ ์ฝ”๋“œ์˜ ๊ธฐ๋Šฅ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, LLM๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ๋ชจ๋“  ๊ณผ์ •์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ณด์•ˆ ์ทจ์•ฝ์ ์„ ๊ณ ๋ คํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
For example, it becomes possible to trick an LLM by hiding commands invisible to the human eye on a web page, thereby inducing it to leak sensitive personal information. Developers must now consider not only the functionality of their code but also new security vulnerabilities that can arise in all processes interacting with LLMs.

๐Ÿ’ก

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ์˜ LLM ํ•ต์‹ฌ ์ธ์‚ฌ์ดํŠธ
Martin Fowler's Core LLM Insights

ํ™˜๊ฐ์€ ๋ณธ์งˆ:
Hallucination is Intrinsic:
LLM์˜ ํ™˜๊ฐ์€ '๊ฒฐํ•จ'์ด ์•„๋‹Œ '๋ณธ์งˆ์  ํŠน์ง•'์œผ๋กœ ์ดํ•ดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
LLM's hallucination must be understood as an 'intrinsic feature,' not a 'flaw.'
๋น„๊ฒฐ์ •์„ฑ์˜ ์‹œ๋Œ€:
The Era of Non-Determinism:
์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์ด ์˜ˆ์ธก ๋ถˆ๊ฐ€๋Šฅ์„ฑ์„ ๊ด€๋ฆฌํ•˜๋Š” ์‹œ๋Œ€๋กœ ์ง„์ž…ํ–ˆ์Šต๋‹ˆ๋‹ค.
Software engineering has entered an era of managing unpredictability.
๊ฒ€์ฆ์€ ํ•„์ˆ˜:
Verification is a Must:
LLM์˜ ๊ฒฐ๊ณผ๋ฌผ์€ ์ฃผ๋‹ˆ์–ด ๊ฐœ๋ฐœ์ž๊ฐ€ ์•„๋‹Œ, ๊ฒ€์ฆ์ด ํ•„์ˆ˜์ ์ธ '๋„๊ตฌ'์˜ ์‚ฐ์ถœ๋ฌผ์ž…๋‹ˆ๋‹ค.
The output of an LLM is not that of a junior developer, but the product of a 'tool' that requires mandatory verification.
๋ณด์•ˆ ์œ„ํ˜‘:
Security Threats:
LLM์€ ์‹œ์Šคํ…œ์˜ ๊ณต๊ฒฉ ํ‘œ๋ฉด์„ ๋„“ํžˆ๋Š” ์ƒˆ๋กœ์šด ๋ณด์•ˆ ๋ณ€์ˆ˜์ž…๋‹ˆ๋‹ค.
LLMs are a new security variable that broadens a system's attack surface.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ ❓
Frequently Asked Questions ❓

Q: ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๊ฐ€ 'ํ™˜๊ฐ'์„ ๊ฒฐํ•จ์ด ์•„๋‹Œ ๋ณธ์งˆ๋กœ ๋ด์•ผ ํ•œ๋‹ค๊ณ  ๋งํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?
Q: Why does Martin Fowler say that 'hallucination' should be seen as an intrinsic feature, not a flaw?
A: LLM์€ ๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ€์žฅ ๊ทธ๋Ÿด๋“ฏํ•œ ๋‹ค์Œ ๋‹จ์–ด๋ฅผ ์˜ˆ์ธกํ•˜์—ฌ ๋ฌธ์žฅ์„ ์ƒ์„ฑํ•˜๋Š” ๋ชจ๋ธ์ด๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์‚ฌ์‹ค๊ด€๊ณ„์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ๋งค๋„๋Ÿฌ์šด ๋ฌธ์žฅ์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” 'ํ™˜๊ฐ'์€ ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ฒฐ๊ณผ๋ฌผ์ด๋ฉฐ, ์ด ํŠน์„ฑ์„ ์ดํ•ดํ•ด์•ผ LLM์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค.
A: This is because LLMs are models that generate sentences by predicting the most plausible next word based on vast amounts of data. In this process, 'hallucination,' which creates fluent sentences regardless of factual accuracy, is a natural outcome. Understanding this characteristic is key to using LLMs correctly.
Q: ์†Œํ”„ํŠธ์›จ์–ด ๊ณตํ•™์˜ '๋น„๊ฒฐ์ •์„ฑ'์ด๋ž€ ๋ฌด์—‡์„ ์˜๋ฏธํ•˜๋ฉฐ, ์™œ ์ค‘์š”ํ•œ๊ฐ€์š”?
Q: What does 'non-determinism' in software engineering mean, and why is it important?
A: '๋น„๊ฒฐ์ •์„ฑ'์ด๋ž€ ๋™์ผํ•œ ์ž…๋ ฅ์— ๋Œ€ํ•ด ํ•ญ์ƒ ๋™์ผํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜ค์ง€ ์•Š๋Š” ํŠน์„ฑ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ „ํ†ต์ ์ธ ์†Œํ”„ํŠธ์›จ์–ด๋Š” 100% ์˜ˆ์ธก ๊ฐ€๋Šฅํ•ด์•ผ ํ–ˆ์ง€๋งŒ, LLM์€ ๊ฐ™์€ ์งˆ๋ฌธ์—๋„ ๋‹ค๋ฅธ ๋‹ต๋ณ€์„ ์ค„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ถˆํ™•์‹ค์„ฑ์„ ์ดํ•ดํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์ด LLM ์‹œ๋Œ€ ๊ฐœ๋ฐœ์ž์˜ ํ•ต์‹ฌ ์—ญ๋Ÿ‰์ด ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
A: 'Non-determinism' refers to the characteristic where the same input does not always produce the same output. While traditional software had to be 100% predictable, an LLM can give different answers to the same question. Understanding and managing this uncertainty has become a core competency for developers in the age of LLMs.
Q: LLM์ด ์ƒ์„ฑํ•œ ์ฝ”๋“œ๋ฅผ ์‹ ๋ขฐํ•˜๊ณ  ๋ฐ”๋กœ ์‚ฌ์šฉํ•ด๋„ ๋ ๊นŒ์š”?
Q: Can I trust and use the code generated by an LLM immediately?
A: ์•„๋‹ˆ์š”, ์ ˆ๋Œ€ ์•ˆ ๋ฉ๋‹ˆ๋‹ค. ๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ๋Š” LLM์ด ๊ทธ๋Ÿด๋“ฏํ•˜์ง€๋งŒ ์ž‘๋™ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ๋ณด์•ˆ์— ์ทจ์•ฝํ•œ ์ฝ”๋“œ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ๊ฒฝ๊ณ ํ•ฉ๋‹ˆ๋‹ค. ์ƒ์„ฑ๋œ ์ฝ”๋“œ๋Š” ๋ฐ˜๋“œ์‹œ ๊ฐœ๋ฐœ์ž๊ฐ€ ์ง์ ‘ ๊ฒ€ํ† , ํ…Œ์ŠคํŠธ, ๊ฒ€์ฆํ•˜๋Š” ๊ณผ์ •์„ ๊ฑฐ์ณ์•ผ ํ•ฉ๋‹ˆ๋‹ค.
A: No, absolutely not. Martin Fowler warns that LLMs can generate code that looks plausible but doesn't work or is insecure. The generated code must be reviewed, tested, and verified by a developer.
Q: LLM์„ ์‚ฌ์šฉํ•˜๋ฉด ์™œ ๋ณด์•ˆ ์œ„ํ˜‘์ด ์ปค์ง€๋‚˜์š”?
Q: Why do security threats increase with the use of LLMs?
A: LLM์€ ์™ธ๋ถ€ ๋ฐ์ดํ„ฐ์™€ ์ƒํ˜ธ์ž‘์šฉํ•˜๊ณ , ๋•Œ๋กœ๋Š” ๋ฏผ๊ฐํ•œ ์ •๋ณด์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ์•…์˜์ ์ธ ์‚ฌ์šฉ์ž๊ฐ€ ์›น์‚ฌ์ดํŠธ๋‚˜ ์ž…๋ ฅ๊ฐ’์— ๋ณด์ด์ง€ ์•Š๋Š” ๋ช…๋ น์–ด๋ฅผ ์ˆจ๊ฒจ LLM์„ ์กฐ์ข…(ํ”„๋กฌํ”„ํŠธ ์ธ์ ์…˜)ํ•˜์—ฌ ์ •๋ณด๋ฅผ ์œ ์ถœํ•˜๊ฑฐ๋‚˜ ์‹œ์Šคํ…œ์„ ๊ณต๊ฒฉํ•˜๋Š” ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋ณด์•ˆ ์œ„ํ˜‘์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
A: Because LLMs interact with external data and can sometimes access sensitive information. Malicious users can hide invisible commands in websites or inputs to manipulate the LLM (prompt injection), leading to new types of security threats such as data leakage or system attacks.

๋งˆํ‹ด ํŒŒ์šธ๋Ÿฌ์˜ ํ†ต์ฐฐ์€ LLM์ด๋ผ๋Š” ์ƒˆ๋กœ์šด ๋„๊ตฌ๋ฅผ ์–ด๋–ป๊ฒŒ ๋ฐ”๋ผ๋ณด๊ณ  ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š”์ง€์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ๊ฐ€์ด๋“œ๋ฅผ ์ œ์‹œํ•ฉ๋‹ˆ๋‹ค. ๋‹จ์ˆœํžˆ ํŽธ๋ฆฌํ•œ ์ฝ”๋“œ ์ƒ์„ฑ๊ธฐ๋ฅผ ๋„˜์–ด, ์šฐ๋ฆฌ ๊ฐœ๋ฐœ ํ™˜๊ฒฝ์˜ ๊ทผ๋ณธ์ ์ธ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ๋ฐ”๊พธ๋Š” ์กด์žฌ์ž„์„ ์ธ์‹ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ์˜ ์กฐ์–ธ์ฒ˜๋Ÿผ, ๋‘๋ ค์›Œํ•˜๊ฑฐ๋‚˜ ๋งน์‹ ํ•˜๊ธฐ๋ณด๋‹ค๋Š” ์ ๊ทน์ ์œผ๋กœ ์‹คํ—˜ํ•˜๊ณ  ๊ฒฝํ—˜์„ ๊ณต์œ ํ•˜๋ฉฐ ์ด ๊ฑฐ๋Œ€ํ•œ ๋ณ€ํ™”์˜ ๋ฌผ๊ฒฐ์— ํ˜„๋ช…ํ•˜๊ฒŒ ์˜ฌ๋ผํƒ€์•ผ ํ•  ๋•Œ์ž…๋‹ˆ๋‹ค.
Martin Fowler's insights provide an important guide on how to view and use the new tool that is the LLM. We must recognize it not just as a convenient code generator, but as an entity that is changing the fundamental paradigm of our development environment. As he advises, now is the time to wisely ride this massive wave of change by experimenting and sharing experiences, rather than fearing or blindly trusting it.

์—ฌ๋Ÿฌ๋ถ„์€ LLM์— ๋Œ€ํ•ด ์–ด๋–ป๊ฒŒ ์ƒ๊ฐํ•˜์‹œ๋‚˜์š”? ๊ฐœ๋ฐœ ๊ณผ์ •์—์„œ ๊ฒช์—ˆ๋˜ ํฅ๋ฏธ๋กœ์šด ๊ฒฝํ—˜์ด ์žˆ๋‹ค๋ฉด ๋Œ“๊ธ€๋กœ ๊ณต์œ ํ•ด์ฃผ์„ธ์š”! ๐Ÿ˜Š
What are your thoughts on LLMs? If you have any interesting experiences from your development process, please share them in the comments! ๐Ÿ˜Š

'์ž ์ˆ˜ํ•จ ํŠนํ—ˆ'์˜ ์ข…๋ง? ๋ฏธ๊ตญ ์ถœ์› ํ•ดํƒœ ๋ฒ•๋ฆฌ ์™„๋ฒฝ ๋ถ„์„ (Sonos vs Google ์ตœ์‹  ํŒ๋ก€)

 

ํŠนํ—ˆ ์ถœ์›, ์ผ๋ถ€๋Ÿฌ ์ง€์—ฐ์‹œํ‚ค๋ฉด ์–ด๋–ป๊ฒŒ ๋ ๊นŒ์š”? ํ˜น์‹œ ๊ธฐ์ˆ  ์‹œ์žฅ์ด ์„ฑ์ˆ™ํ•  ๋•Œ๊นŒ์ง€ ํŠนํ—ˆ ๋“ฑ๋ก์„ ๋ฏธ๋ฃจ๋Š” '์ž ์ˆ˜ํ•จ ํŠนํ—ˆ' ์ „๋žต์— ๋Œ€ํ•ด ๋“ค์–ด๋ณด์…จ๋‚˜์š”? ์ด ๊ธ€์—์„œ๋Š” ๋ฏธ๊ตญ ํŠนํ—ˆ ์ œ๋„ ์† ์‹œํ•œํญํƒ„, '์ถœ์› ํ•ดํƒœ' ๋ฒ•๋ฆฌ์˜ ๋ชจ๋“  ๊ฒƒ์„ ์ตœ์‹  ํŒ๋ก€์™€ ํ•จ๊ป˜ ์•Œ๊ธฐ ์‰ฝ๊ฒŒ ์„ค๋ช…ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

์•ˆ๋…•ํ•˜์„ธ์š”! ์˜ค๋Š˜์€ ๊ธฐ์—…์ด๋‚˜ ๋ฐœ๋ช…๊ฐ€๋ผ๋ฉด ๊ผญ ์•Œ์•„์•ผ ํ• , ์กฐ๊ธˆ์€ ์ƒ์†Œํ•˜์ง€๋งŒ ์•„์ฃผ ์ค‘์š”ํ•œ ๋ฏธ๊ตญ ํŠนํ—ˆ ์ด์•ผ๊ธฐ๋ฅผ ํ•ด๋ณผ๊นŒ ํ•ด์š”. ๋ฐ”๋กœ '์ถœ์› ํ•ดํƒœ(Prosecution Laches)'๋ผ๋Š” ๊ฐœ๋…์ธ๋ฐ์š”. ์ œ๊ฐ€ ์ตœ๊ทผ์— 'Sonos ๋Œ€ Google' ์‚ฌ๊ฑด ํŒ๊ฒฐ์„ ๋ณด๊ณ  '์•„, ์ด๊ฑฐ ์ •๋ง ์ค‘์š”ํ•˜๊ตฌ๋‚˜!' ์‹ถ์–ด์„œ ์—ฌ๋Ÿฌ๋ถ„๊ป˜ ๊ผญ ๊ณต์œ ํ•˜๊ณ  ์‹ถ์—ˆ์–ด์š”. '๋‚˜์ค‘์— ํ•ด์•ผ์ง€' ํ•˜๊ณ  ๋ฏธ๋ฃจ๋Š” ์Šต๊ด€์ด ํŠนํ—ˆ ์„ธ๊ณ„์—์„œ๋Š” ์–ผ๋งˆ๋‚˜ ํฐ ๋‚˜๋น„ํšจ๊ณผ๋ฅผ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ๋Š”์ง€, ์ง€๊ธˆ๋ถ€ํ„ฐ ํ•จ๊ป˜ ์•Œ์•„๋ณด์‹œ์ฃ !

'์ž ์ˆ˜ํ•จ ํŠนํ—ˆ'๋ฅผ ๋ง‰๋Š” ๋ฐฉํŒจ, ์ถœ์› ํ•ดํƒœ๋ž€? ๐Ÿค”

'์ถœ์› ํ•ดํƒœ'๋ผ๋Š” ๋ง์ด ์ข€ ์–ด๋ ต๊ฒŒ ๋“ค๋ฆฌ์ฃ ? ์‰ฝ๊ฒŒ ๋งํ•ด, ํŠนํ—ˆ ์ถœ์›์ธ์ด ํ•ฉ๋ฆฌ์ ์ธ ์ด์œ  ์—†์ด ๊ณ ์˜๋กœ ์ถœ์› ์ ˆ์ฐจ๋ฅผ ์ง€์—ฐ์‹œ์ผœ ๋‹ค๋ฅธ ์‚ฌ๋žŒ์—๊ฒŒ ํ”ผํ•ด๋ฅผ ์คฌ์„ ๋•Œ, ๋‚˜์ค‘์— ๊ทธ ํŠนํ—ˆ๊ถŒ์„ ์ฃผ์žฅํ•  ์ˆ˜ ์—†๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฒ•๋ฆฌ๋ฅผ ๋งํ•ด์š”. ์•„์ฃผ ์˜ค๋ž˜์ „๋ถ€ํ„ฐ ์žˆ๋˜ ํ˜•ํ‰๋ฒ•์ƒ์˜ ๋ฐฉ์–ด ์ˆ˜๋‹จ์ด์ฃ .

ํŠนํžˆ 1995๋…„ ๋ฏธ๊ตญ ํŠนํ—ˆ๋ฒ•์ด ๊ฐœ์ •๋˜๊ธฐ ์ „์—๋Š” ์ด๋Ÿฐ ์ „๋žต์ด ๊ธฐ์Šน์„ ๋ถ€๋ ธ์–ด์š”. ๋‹น์‹œ์—๋Š” ํŠนํ—ˆ ๊ธฐ๊ฐ„์ด '๋“ฑ๋ก์ผ'๋กœ๋ถ€ํ„ฐ 17๋…„์ด์—ˆ๊ฑฐ๋“ ์š”. ๊ทธ๋ž˜์„œ ์ผ๋ถ€๋Ÿฌ ๋“ฑ๋ก์„ ๋Šฆ์ถ”๊ณ , ๊ด€๋ จ ๊ธฐ์ˆ ์ด ์‹œ์žฅ์˜ ํ‘œ์ค€์ด ๋˜์—ˆ์„ ๋•Œ '์งœ์ž”!' ํ•˜๊ณ  ๋‚˜ํƒ€๋‚˜ ๋ง‰๋Œ€ํ•œ ๋กœ์—ดํ‹ฐ๋ฅผ ์š”๊ตฌํ•˜๋Š” ๊ฑฐ์ฃ . ๋งˆ์น˜ ๊นŠ์€ ๋ฐ”๋‹ท์†์— ์ˆจ์–ด์žˆ๋‹ค๊ฐ€ ๋ชฉํ‘œ๋ฌผ์ด ๋‚˜ํƒ€๋‚˜๋ฉด ๊ณต๊ฒฉํ•˜๋Š” ์ž ์ˆ˜ํ•จ ๊ฐ™๋‹ค๊ณ  ํ•ด์„œ '์ž ์ˆ˜ํ•จ ํŠนํ—ˆ(Submarine Patent)'๋ผ๋Š” ๋ณ„๋ช…์ด ๋ถ™์—ˆ๋‹ต๋‹ˆ๋‹ค.

๐Ÿ’ก ์•Œ์•„๋‘์„ธ์š”!
์ถœ์› ํ•ดํƒœ๊ฐ€ ์ธ์ •๋˜๋ ค๋ฉด ํฌ๊ฒŒ ๋‘ ๊ฐ€์ง€ ์š”๊ฑด์ด ํ•„์š”ํ•ด์š”. ์ฒซ์งธ, ํŠนํ—ˆ ์ถœ์›์ธ์˜ '๋ถˆํ•ฉ๋ฆฌํ•˜๊ณ  ์„ค๋ช…ํ•  ์ˆ˜ ์—†๋Š” ์ง€์—ฐ'์ด ์žˆ์–ด์•ผ ํ•˜๊ณ , ๋‘˜์งธ, ๊ทธ ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์†Œ์†ก ์ƒ๋Œ€๋ฐฉ(ํ”ผ๊ณ )์—๊ฒŒ '๋ฒ•์  ๋ถˆ์ด์ต(prejudice)'์ด ๋ฐœํ–‰ํ•œ๋‹ค๋Š” ์ ์ด ์ž…์ฆ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ๋งํ•˜๋Š” '๋ฒ•์  ๋ถˆ์ด์ต ๋˜๋Š” ์†ํ•ด'(prejudice)๋ž€ ๋‹จ์ˆœํ•œ ํ”ผํ•ด๋ฅผ ๋„˜์–ด, 'ํŠนํ—ˆ ์ถœ์›์ธ์˜ ๋ถ€๋‹นํ•œ ์ง€์—ฐ์ด ์—†์—ˆ๋‹ค๋ฉด ๋ฐœ์ƒํ•˜์ง€ ์•Š์•˜์„, ํ”ผ๊ณ ์˜ ๊ฒฝ์ œ์ ·์‚ฌ์—…์  ์ดํ•ด๊ด€๊ณ„ ํ˜•์„ฑ'์„ ์˜๋ฏธํ•˜๋Š” ๋ฒ•๋ฅ  ์šฉ์–ด๋ž๋‹ˆ๋‹ค.

 

์ „์„ค์˜ ๋ฐœ๋ช…๊ฐ€, ๊ธธ๋ฒ„ํŠธ ํ•˜์–ํŠธ ์ด์•ผ๊ธฐ ๐Ÿ“œ

์ถœ์› ํ•ดํƒœ๋ฅผ ์ด์•ผ๊ธฐํ•  ๋•Œ ๋นผ๋†“์„ ์ˆ˜ ์—†๋Š” ์ธ๋ฌผ์ด ๋ฐ”๋กœ '๊ธธ๋ฒ„ํŠธ ํ•˜์–ํŠธ'์ž…๋‹ˆ๋‹ค. ์ด๋ถ„์€ ๋งˆ์ดํฌ๋กœ์ปจํŠธ๋กค๋Ÿฌ ๊ธฐ์ˆ ์˜ ์„ ๊ตฌ์ž๋กœ ๋ถˆ๋ฆฌ์ง€๋งŒ, ๋™์‹œ์— ์ˆ˜์‹ญ ๋…„์— ๊ฑธ์นœ ํŠนํ—ˆ ์ถœ์› ์ง€์—ฐ์œผ๋กœ๋„ ์•„์ฃผ ์œ ๋ช…ํ•ด์š”. 1995๋…„ ๋ฒ• ๊ฐœ์ • ์ง์ „์— ๋ฌด๋ ค 400๊ฐœ์— ๊ฐ€๊นŒ์šด ํŠนํ—ˆ๋ฅผ ์ถœ์›ํ•˜๋ฉฐ ์†Œ์œ„ 'GATT ๋ฒ„๋ธ” ์ถœ์›'์„ ๊ฐํ–‰ํ–ˆ์ฃ .

๋ฏธ๊ตญ ํŠนํ—ˆ์ฒญ(PTO)์€ ํ•˜์–ํŠธ์˜ ์ด๋Ÿฐ ์žฅ๊ธฐ์ ์ธ ์ง€์—ฐ ํ–‰์œ„๊ฐ€ ํŠนํ—ˆ ์‹œ์Šคํ…œ์„ ๋‚จ์šฉํ•˜๋Š” ๊ฒƒ์ด๋ผ๋ฉฐ '์ถœ์› ํ•ดํƒœ'๋ฅผ ์ฃผ์žฅํ–ˆ๊ณ , ๊ฒฐ๊ตญ 2025๋…„ ์—ฐ๋ฐฉ์ˆœํšŒํ•ญ์†Œ๋ฒ•์›์€ ํŠนํ—ˆ์ฒญ์˜ ์†์„ ๋“ค์–ด์คฌ์Šต๋‹ˆ๋‹ค. ์ด ํŒ๊ฒฐ์€ ํŠนํ—ˆ ์ถœ์› ๊ณผ์ •์—์„œ์˜ ์„ฑ์‹คํ•œ ์ง„ํ–‰ ์˜๋ฌด๋ฅผ ๋‹ค์‹œ ํ•œ๋ฒˆ ์ผ๊นจ์›Œ์ค€ ์ค‘์š”ํ•œ ์‚ฌ๊ฑด์œผ๋กœ ๊ธฐ๋ก๋˜์—ˆ์–ด์š”.

๊ตฌ๋ถ„ ์ผ๋ฐ˜์ ์ธ ํŠนํ—ˆ ์ถœ์› ํ•˜์–ํŠธ์˜ ์‚ฌ๋ก€
์ถœ์› ์‹œ์  ๊ธฐ์ˆ  ๊ฐœ๋ฐœ ํ›„ ์ฆ‰์‹œ 1970๋…„๋Œ€๋ถ€ํ„ฐ ์‹œ์ž‘
์ง€์—ฐ ๊ธฐ๊ฐ„ ํ‰๊ท  2~3๋…„ ์ˆ˜์‹ญ ๋…„์— ๊ฑธ์ณ ์ง„ํ–‰
๊ฒฐ๊ณผ ์ •์ƒ์ ์ธ ํŠนํ—ˆ ๋“ฑ๋ก ์ถœ์› ํ•ดํƒœ๋กœ ์ธํ•œ ๊ถŒ๋ฆฌ ๋ถˆ์ธ์ •

 

์ตœ์‹  ํŒ๋ก€: Sonos ๋Œ€ Google ์Šค๋งˆํŠธ ์Šคํ”ผ์ปค ์ „์Ÿ ๐Ÿ”Š

๊ทธ๋ ‡๋‹ค๋ฉด 1995๋…„ ๋ฒ• ๊ฐœ์ •์œผ๋กœ ํŠนํ—ˆ ๊ธฐ๊ฐ„์ด '์ถœ์›์ผ'๋กœ๋ถ€ํ„ฐ 20๋…„์œผ๋กœ ๋ฐ”๋€ ์ง€๊ธˆ์€ ์–ด๋–จ๊นŒ์š”? '์ž ์ˆ˜ํ•จ ํŠนํ—ˆ' ์ „๋žต์€ ์ด์ œ ๋ฌด์˜๋ฏธํ•ด์กŒ์„๊นŒ์š”? ์ตœ๊ทผ Sonos์™€ Google์˜ ์Šค๋งˆํŠธ ์Šคํ”ผ์ปค ํŠนํ—ˆ ์†Œ์†ก์ด ์ด ์งˆ๋ฌธ์— ๋Œ€ํ•œ ์ค‘์š”ํ•œ ์‹ค๋งˆ๋ฆฌ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

1์‹ฌ ๋ฒ•์›์€ Sonos๊ฐ€ 13๋…„์ด๋ผ๋Š” ๊ธด ์‹œ๊ฐ„ ๋™์•ˆ ๊ณ„์† ์ถœ์›์„ ํ†ตํ•ด ์˜๋„์ ์œผ๋กœ ์ ˆ์ฐจ๋ฅผ ์ง€์—ฐํ–ˆ๊ณ , ๊ทธ ์‚ฌ์ด Google์ด ํ•ด๋‹น ๊ธฐ์ˆ ์— ๋ง‰๋Œ€ํ•œ ํˆฌ์ž๋ฅผ ํ–ˆ๋‹ค๋Š” ์ ์„ ๋“ค์–ด '์ถœ์› ํ•ดํƒœ'๋ฅผ ์ธ์ •ํ–ˆ์–ด์š”. ํŠนํžˆ 1์‹ฌ ํŒ์‚ฌ๋Š” Sonos๊ฐ€ ๊ฒฝ์Ÿ์‚ฌ(Google) ์ œํ’ˆ์„ ๋ณด๊ณ  ๊ทธ์— ๋งž์ถฐ ์ฒญ๊ตฌํ•ญ์„ ์ˆ˜์ •ํ•˜๋Š” 'ํ‘œ์  ๊ณ„์† ์ถœ์›(Targeted Continuation Practice)' ๊ด€ํ–‰์„ ๊ฐ•ํ•˜๊ฒŒ ๋น„ํŒํ–ˆ์ฃ .

ํ•˜์ง€๋งŒ! 2025๋…„ ์—ฐ๋ฐฉ์ˆœํšŒํ•ญ์†Œ๋ฒ•์›์€ ์ด ํŒ๊ฒฐ์„ ๋’ค์ง‘์—ˆ์Šต๋‹ˆ๋‹ค. ํ•ญ์†Œ ๋ฒ•์›์€ ์ถœ์› ํ•ดํƒœ๋Š” '์•„์ฃผ ๋“œ๋ฌธ ๊ฒฝ์šฐ'์—๋งŒ ํ—ˆ์šฉ๋˜๋Š” ์˜ˆ์™ธ์ ์ธ ๋ฐฉ์–ด ์ˆ˜๋‹จ์ž„์„ ๊ฐ•์กฐํ•˜๋ฉฐ, Google์ด Sonos์˜ ์ง€์—ฐ ๋•Œ๋ฌธ์— ์‹ค์งˆ์ ์ธ ํ”ผํ•ด๋ฅผ ๋ดค๋‹ค๋Š” ์ฆ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค๊ณ  ํŒ๋‹จํ–ˆ์–ด์š”. ์ด ํŒ๊ฒฐ๋กœ Sonos๋Š” 3,250๋งŒ ๋‹ฌ๋Ÿฌ์˜ ๋ฐฐ์‹ฌ์› ํ‰๊ฒฐ์„ ๋˜์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.

⚠️ ์ฃผ์˜ํ•˜์„ธ์š”!
Sonos ์‚ฌ๊ฑด์˜ ํ•ญ์†Œ์‹ฌ ํŒ๊ฒฐ์€ ์ถœ์› ํ•ดํƒœ ์ฃผ์žฅ์ด ๊ทธ๋งŒํผ ์–ด๋ ต๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ๊ทธ๋ ‡๋‹ค๊ณ  ํ•ด์„œ ์žฅ๊ธฐ๊ฐ„์˜ ์ถœ์› ์ง€์—ฐ์ด ๊ดœ์ฐฎ๋‹ค๋Š” ์˜๋ฏธ๋Š” ์•„๋‹ˆ์—์š”. ํŠนํžˆ ๊ฒฝ์Ÿ์‚ฌ ์ œํ’ˆ์„ ๋ช…๋ฐฑํžˆ ๊ฒจ๋ƒฅํ•œ ๋“ฏํ•œ ๊ณ„์† ์ถœ์› ์ „๋žต์€ ์—ฌ์ „ํžˆ ์œ„ํ—˜ ๋ถ€๋‹ด์ด ๋”ฐ๋ฅผ ์ˆ˜ ์žˆ๋‹ต๋‹ˆ๋‹ค.
๐Ÿ’ก

์ถœ์› ํ•ดํƒœ ํ•ต์‹ฌ ์š”์•ฝ

๊ณ ์˜์  ์ง€์—ฐ์€ ๊ธˆ๋ฌผ: ํ•ฉ๋ฆฌ์  ์ด์œ  ์—†๋Š” ์žฅ๊ธฐ ์ง€์—ฐ์€ ํŠนํ—ˆ๊ถŒ ํ–‰์‚ฌ์— ๊ฑธ๋ฆผ๋Œ์ด ๋  ์ˆ˜ ์žˆ์–ด์š”.
'๋ถˆ์ด์ต' ์ž…์ฆ์ด ๊ด€๊ฑด: ์‹ค์‹œ์ž๋Š” ํŠนํ—ˆ์ถœ์›์˜ ๋‹จ์ˆœ ์ง€์—ฐ๋งŒ์œผ๋ก  ๋ถ€์กฑ! ์ง€์—ฐ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ƒ๋Œ€๋ฐฉ์ด ๊ธฐ์ˆ ์— ํˆฌ์ž/๊ฐœ๋ฐœํ–ˆ๋‹ค๋Š” '๊ฐœ์ž… ๊ถŒ๋ฆฌ'๊ณผ ๊ฐ™์€ ์†ํ•ด ๋˜๋Š” ๋ถˆ์ด์ต ๋ฐœ์ƒ์„ ์ž…์ฆํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
๋‹ฌ๋ผ์ง„ ํŒ๊ฒฐ ์ถ”์„ธ:
Sonos ํŒ๊ฒฐ๋กœ ์ถœ์› ํ•ดํƒœ ์ธ์ • ๋ฌธํ„ฑ์€ ๋” ๋†’์•„์กŒ์–ด์š”!
์„ฑ์‹คํ•œ ์ ˆ์ฐจ ์ง„ํ–‰: ๋ชจ๋“  ์ง€์—ฐ์€ ํ•ฉ๋ฆฌ์ ์œผ๋กœ ์„ค๋ช… ๊ฐ€๋Šฅํ•ด์•ผ ํ•˜๋ฉฐ, ๊ด€๋ จ ๊ธฐ๋ก์„ ์ž˜ ๋‚จ๊ฒจ๋‘๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์š”.
ํŠนํ—ˆ๋Š” ํƒ€์ด๋ฐ! ๊ถŒ๋ฆฌ ์œ„์— ์ž ์ž๋Š” ์ž๋Š” ๋ณดํ˜ธ๋ฐ›๊ธฐ ์–ด๋ ต์Šต๋‹ˆ๋‹ค.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ ❓

Q: ๊ทธ๋Ÿผ ํŠนํ—ˆ ๊ณ„์†์ถœ์›(Continuation) ์ „๋žต์€ ์ด์ œ ์œ„ํ—˜ํ•œ๊ฐ€์š”?
A: ์•„๋‹ˆ์š”, ์ •์ƒ์ ์ธ ๊ณ„์†์ถœ์› ์ž์ฒด๋Š” ์ „ํ˜€ ๋ฌธ์ œ ๋˜์ง€ ์•Š์•„์š”. ๊ธฐ์ˆ ์„ ๋ฐœ์ „์‹œํ‚ค๊ณ  ๊ถŒ๋ฆฌ ๋ฒ”์œ„๋ฅผ ๋ช…ํ™•ํžˆ ํ•˜๊ธฐ ์œ„ํ•œ ํ•ฉ๋ฒ•์ ์ธ ์ ˆ์ฐจ์ž…๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์ˆ˜์‹ญ ๋…„์”ฉ ์ด์œ  ์—†์ด ์ง€์—ฐ์‹œํ‚ค๊ฑฐ๋‚˜, ๊ฒฝ์Ÿ์‚ฌ ์ œํ’ˆ์„ ๋ช…๋ฐฑํžˆ ๊ฒจ๋ƒฅํ•˜๋Š” ๋“ฏํ•œ ๋ชจ์Šต์€ ํ”ผํ•˜๋Š” ๊ฒƒ์ด ์ข‹์Šต๋‹ˆ๋‹ค.
Q: '๋ถˆํ•ฉ๋ฆฌํ•œ ์ง€์—ฐ'์˜ ๋ช…ํ™•ํ•œ ๊ธฐ์ค€์ด ์žˆ๋‚˜์š”? ๋ช‡ ๋…„๋ถ€ํ„ฐ ์œ„ํ—˜ํ•œ๊ฐ€์š”?
A: ์•„์‰ฝ๊ฒŒ๋„ '๋ช‡ ๋…„ ์ด์ƒ์€ ๋ฌด์กฐ๊ฑด ์œ„ํ—˜ํ•˜๋‹ค' ๊ฐ™์€ ๋ช…ํ™•ํ•œ ๊ธฐ์ค€์€ ์—†์Šต๋‹ˆ๋‹ค. ๋ฒ•์›์€ '์ด์ฒด์  ์ƒํ™ฉ(totality of the circumstances)'์„ ๊ณ ๋ คํ•˜์—ฌ ๊ฐœ๋ณ„ ์‚ฌ๊ฑด๋งˆ๋‹ค ํŒ๋‹จํ•ฉ๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ํ•˜์–ํŠธ์˜ ์‚ฌ๋ก€์ฒ˜๋Ÿผ ์ˆ˜์‹ญ ๋…„์— ๊ฑธ์นœ ์ง€์—ฐ์€ ๋ช…๋ฐฑํžˆ ๋ถˆํ•ฉ๋ฆฌํ•˜๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๊ฒ ์ฃ .
Q: ํ•œ๊ตญ ํŠนํ—ˆ๋ฒ•์—๋„ ์ถœ์› ํ•ดํƒœ์™€ ๋น„์Šทํ•œ ์ œ๋„๊ฐ€ ์žˆ๋‚˜์š”?
A: ํ•œ๊ตญ ํŠนํ—ˆ๋ฒ•์—๋Š” ๋ฏธ๊ตญ์‹ ‘์ถœ์› ํ•ดํƒœ(prosecution laches)’ ๋ฒ•๋ฆฌ๊ฐ€ ๋ช…๋ฌธ์œผ๋กœ ์กด์žฌํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ช‡ ๊ฐ€์ง€ ์ œ๋„์  ์žฅ์น˜๊ฐ€ ์‚ฌ์‹ค์ƒ ๋น„์Šทํ•œ ์ œํ•œ ํšจ๊ณผ๋ฅผ ๊ฐ€์ง‘๋‹ˆ๋‹ค.

๊ณ„์†์ถœ์› ์ œ๋„ ๋ถ€์žฌ: ํ•œ๊ตญ์€ ๋ฏธ๊ตญ์ฒ˜๋Ÿผ ๋ฌด์ œํ•œ ๊ณ„์†์ถœ์›์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ณ , ๋Œ€์‹  ๋ถ„ํ• ์ถœ์›๋งŒ ํ—ˆ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋‹ค๋งŒ ์ด๋Š” ๊ฑฐ์ ˆ์ด์œ ํ†ต์ง€ ํ›„ ์˜๊ฒฌ์„œ ์ œ์ถœ๊ธฐ๊ฐ„์ด๋‚˜ ํŠนํ—ˆ๊ฒฐ์ • ์†ก๋‹ฌ ํ›„ 3๊ฐœ์›” ์ด๋‚ด ๋“ฑ ํŠน์ • ์‹œ์ ์—์„œ๋งŒ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

์‹ฌ์‚ฌ์ฒญ๊ตฌ 3๋…„ ๊ธฐํ•œ: ์ถœ์›์ผ๋ถ€ํ„ฐ 3๋…„ ์•ˆ์— ์‹ฌ์‚ฌ์ฒญ๊ตฌ๋ฅผ ํ•˜์ง€ ์•Š์œผ๋ฉด ์‹ฌ์‚ฌ์— ์ฐฉ์ˆ˜๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ผ์ • ๊ธฐ๊ฐ„ ์‹œ์žฅ์„ ๊ด€๋งํ•  ์ˆ˜ ์žˆ์œผ๋‚˜ 3๋…„์ด ์ƒํ•œ์ž…๋‹ˆ๋‹ค.

PCT ํ™œ์šฉ ๊ฐ€๋Šฅ: ๊ตญ์ œ์ถœ์›์„ ํ™œ์šฉํ•˜๋ฉด ์ „๋žต์  ์œ ์—ฐ์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์ง€๋งŒ, ์žฅ๊ธฐ๊ฐ„ ๊ถŒ๋ฆฌํ™”๋ฅผ ๋Šฆ์ถฐ ‘์„œ๋ธŒ๋งˆ๋ฆฐ ํŠนํ—ˆ’๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ์€ ์ œ๋„์ƒ ๋ถˆ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.

๋”ฐ๋ผ์„œ ํ•œ๊ตญ์—๋Š” ์ถœ์› ํ•ดํƒœ์™€ ๋™์ผํ•œ ๋ฒ•๋ฆฌ๋Š” ์—†์ง€๋งŒ, ๋ถ„ํ• ์ถœ์› ์‹œ๊ธฐ ์ œํ•œ๊ณผ ์‹ฌ์‚ฌ์ฒญ๊ตฌ 3๋…„ ๊ธฐํ•œ ๋“ฑ์„ ํ†ตํ•ด ๊ถŒ๋ฆฌ ๋‚จ์šฉ ๋ฐฉ์ง€ ๋ฐ ์ œ3์ž์˜ ์˜ˆ์ธก๊ฐ€๋Šฅ์„ฑ ๋ณด์žฅ์ด๋ผ๋Š” ์ •์ฑ…์  ์ทจ์ง€๋Š” ๊ตฌํ˜„๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

์˜ค๋Š˜์€ ๋ฏธ๊ตญ ํŠนํ—ˆ์˜ '์ถœ์› ํ•ดํƒœ'๋ผ๋Š” ํฅ๋ฏธ๋กœ์šด ์ฃผ์ œ์— ๋Œ€ํ•ด ์•Œ์•„๋ดค์Šต๋‹ˆ๋‹ค. ์กฐ๊ธˆ ๋ณต์žกํ•˜๊ฒŒ ๋А๊ปด์งˆ ์ˆ˜ ์žˆ์ง€๋งŒ, ํ•ต์‹ฌ์€ ๊ฒฐ๊ตญ '์ •๋‹นํ•œ ์ด์œ  ์—†์ด ์ž์‹ ์˜ ๊ถŒ๋ฆฌ ํ–‰์‚ฌ๋ฅผ ๋ฏธ๋ฃจ์–ด ํƒ€์ธ์—๊ฒŒ ํ”ผํ•ด๋ฅผ ์ฃผ์ง€ ๋ง๋ผ'๋Š” ์ƒ์‹์ ์ธ ์›์น™์ธ ๊ฒƒ ๊ฐ™์•„์š”. ์—ฌ๋Ÿฌ๋ถ„์˜ ์†Œ์ค‘ํ•œ ๋ฐœ๋ช…์ด ๋ฐ”๋‹ท์† ์ž ์ˆ˜ํ•จ์ฒ˜๋Ÿผ ๊ฐ€๋ผ์•‰์ง€ ์•Š๋„๋ก, ํ•ญ์ƒ ์„ฑ์‹คํ•˜๊ฒŒ ์ ˆ์ฐจ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ๋ฌด์—‡๋ณด๋‹ค ์ค‘์š”ํ•ด ๋ณด์ž…๋‹ˆ๋‹ค. ๋” ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด ์–ธ์ œ๋“  ๋Œ“๊ธ€๋กœ ๋ฌผ์–ด๋ด ์ฃผ์„ธ์š”!

※ ๋ณธ ๋ธ”๋กœ๊ทธ ํฌ์ŠคํŠธ๋Š” ์ผ๋ฐ˜์ ์ธ ์ •๋ณด ์ œ๊ณต์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๋ฉฐ, ํŠน์ • ์‚ฌ์•ˆ์— ๋Œ€ํ•œ ๋ฒ•๋ฅ ์  ์ž๋ฌธ์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๊ฐœ๋ณ„์ ์ธ ๋ฒ•๋ฅ  ๋ฌธ์ œ์— ๋Œ€ํ•ด์„œ๋Š” ๋ฐ˜๋“œ์‹œ ์ „๋ฌธ๊ฐ€์™€ ์ƒ๋‹ดํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค.

Does Exporting Equal Patent Infringement? A U.S. vs. Korea Breakdown of New 2025 Laws

  Blogging_CS | September 21, 2025 Redrawing the Borders of Patent Rights in a Global E...